2016 OU2 GROUNDWATER INVESTIGATION RE131D1, RE131D2, RE131D3 (VPB165) INSTALLATION REPORT

NAVAL WEAPONS INDUSTRIAL RESERVE PLANT (NWIRP) SITE 1 OU2 BETHPAGE, NY

Prepared for:

Department of the Navy Naval Facilities Engineering Command, Atlantic 9324 Virginia Avenue Building Z-144 Norfolk, Virginia 23511

August 2016

2016 OU2 GROUNDWATER INVESTIGATION RE131D1, RE131D2, RE131D3 (VPB165) INSTALLATION REPORT

NWIRP BETHPAGE SITE 1 OU2 BETHPAGE, NY

Prepared for:

Department of the Navy Naval Facilities Engineering Command, Atlantic 9324 Virginia Avenue Building Z-144 Norfolk, Virginia 23511

Prepared by:

Resolution Consultants

A Joint Venture of AECOM & EnSafe
1500 Wells Fargo Building
440 Monticello Avenue
Norfolk, Virginia 23510

Contract Number: N62470-11-D-8013

CTO WE15

August 2016

Brian Caldwell

Contract Task Order Manager

Fin Caldwell

Table of Contents

LIST C	F ACRO	NYMS AND ABBREVIATIONSiii
1.0	PROJE	CT BACKGROUND1
2.0	1.1 1.2 1.3 FIELD	Scope and Objectives
	2.1 2.2 2.3 2.4 2.5	Drilling and Well Construction
3.0	REFER	ENCES8
		Tables
Table '	1	Monitoring Well Construction Summary
Table 2	2	Monitoring Well Development Summary
Table 3	3	Analytical Data Summary
Table 4	4	Stabilized Field Parameters
		Figures
Figure	1	General Location Map
Figure	2	RE131D1, RE131D2, and RE131D3 Location Map

Appendices

Appendix A – RE131D1, RE131D2, RE131D3

Section 1 Boring Logs

Section 2 Monitoring Well Construction Logs

Section 3 Groundwater Sample Log Sheets

Section 4 Analytical Data Validation

Section 5 Survey

List of Acronyms and Abbreviations

AOC Area of Concern bgs below ground surface

COR Continuously Operating Reference

EPA Environmental Protection Agency, United States

ft feet

GOCO Government-Owned Contractor-Operated

GPS Global Positioning System
IDW Investigation Derived Waste
IR Installation Restoration
Katahdin Katahdin Analytical Services
NAD North American Datum

NAVD North American Vertical Datum

NAVFAC Naval Facilities Engineering Command

NG Northrop Grumman

NTU nephelometric turbidity units

NWIRP Naval Weapons Industrial Reserve Plant

NYS New York State

NYSDEC New York State Department of Environmental Conservation

OU Operable Unit

PCBs Polychlorinated Biphenyls

POTW Publicly Owned Treatment Works
PPE Personal Protective Equipment

PVC Polyvinylchloride

SAP Sampling and Analysis Plan SVOC Semivolatile Organic Compounds

TCE Trichloroethene

TCL Target Compound List

TCLP Toxicity Characteristic Leaching Procedure

TOC Total Organic Carbon
UFP United Federal Programs

US United States

VOC Volatile Organic Compounds

VPB Vertical Profile Boring

1.0 PROJECT BACKGROUND

Resolution Consultants has prepared this Data Summary Report for the Naval Facilities Engineering Command (NAVFAC), Mid-Atlantic under contract task order WE15 Contract N62470-11-D-8013. This report describes the installation of three monitoring wells and one initial groundwater monitoring event (specifically at the Vertical Profile Boring [VPB] 165 location) in 2016 for the Naval Weapons Industrial Reserve Plant (NWIRP) Bethpage Operable Unit (OU) 2 Site 1 offsite plume. NWIRP Bethpage is located in east-central Nassau County, Long Island, New York, approximately 30 miles east of New York City (Figure 1).

1.1 Scope and Objectives

This report provides information on the installation of RE131D1, RE131D2 and RE131D3. The purpose of this investigation was to ascertain contaminant levels and depths, and the western extent of the offsite plume north of Hempstead Turnpike and west of North Wantagh Avenue. The locations of RE131D1, RE131D2 and RE131D3, as well as other VPBs and monitoring well locations are shown in Figure 2.

The field investigation included completing three monitoring wells, well development, soil/groundwater analysis, groundwater grab samples, and surveying. Field tasks were conducted in 2016 in accordance with the *United Federal Programs Sampling and Analysis Plan (UFP SAP)*, Bethpage, New York (Resolution, 2013a). In addition, the work adhered to the following UFP SAP Addendums: *Groundwater Sampling Using Low Stress (Low Flow) Purging and Sampling Protocol* (Resolution Consultants, 2013b) and *Installation of Vertical Profile Borings and Monitoring Wells* (Resolution Consultants, 2013c).

Documentation of these activities is included in Appendix A of this report.

1.2 Site History

NWIRP Bethpage is in the Hamlet of Bethpage, Town of Oyster Bay, New York. Since its inception in 1941, the plant's primary mission was the research, prototyping, testing, design, engineering, fabrication, and primary assembly of military aircraft. The facilities at NWIRP included four plants used for assembly and prototype testing, a group of quality control laboratories, two warehouse complexes (north and south), a salvage storage area, water recharge basins, the Industrial Wastewater Treatment Plant, and several smaller support buildings.

The Navy's property originally totaled 109.5 acres and was formerly a Government-Owned Contractor-Operated (GOCO) facility that was operated by Northrop Grumman (NG) until September 1998. Prior to 2002, the NWIRP property was bordered on the north, west, and south by current or former NG facilities, and on the east by a residential neighborhood. By March 2008, approximately 100 acres of NWIRP property were transferred to Nassau County in three separate actions. The remaining 9 acres and access easements were retained by the Navy to continue remedial efforts at Installation Restoration (IR) Site 1 – Former Drum Marshalling Area and Site 4 – Former Underground Storage Tanks (Area of Concern [AOC] 22). A parcel of land connecting the two sites was also retained. Currently, the 9-acre parcel of NWIRP is bordered on the east by the residential neighborhood and on the north, south, and west by Steel Equities; however, a small portion is still owned by Nassau County. Access to the NWIRP is from South Oyster Bay Road.

1.3 Geology and Hydrogeology

Overburden at the site consists of well over 1,000 feet (ft) of unconsolidated deposits overlying crystalline bedrock of the Hartland Formation. Overburden is divided into four geologic units: the upper Pleistocene deposits, the Magothy Formation, the clay member of the Raritan Formation ("Raritan Clay") and the Lloyd Sand member of the Raritan Formation ("Lloyd Sand") (Geraghty and Miller, 1994).

The upper Pleistocene ranges in thickness from approximately 50 to 100 ft and consists of till and outwash deposits of medium to coarse sand and gravel with lenses of fine sand, silt and clay (Smolensky and Feldman, 1990); these deposits form the Upper Glacial Aquifer. Directly underlying this unit is the Magothy Formation with a thickness of 650 to 900 ft and lower extent of 700 to 1,000 ft below ground surface (bgs), as observed at the former NWIRP and extending southeast to areas south of Southern State Parkway. Locally at the RE131 locations, the bottom of the Magothy (top of the Raritan Clay) is encountered at approximately 893 feet bgs. The Magothy is characterized by fine to medium sands and silts interbedded with zones of clays, silty sands and sandy clays. Sand and gravel lenses are found in some areas between depths of 600 and 880 ft bgs; these deposits form the main producing zones of the Magothy Aquifer.

Investigations performed by the Navy since 2012 indicate that the bottom of the Magothy (top of the Raritan Clay) can extend to depths of 700 to greater than 1,000 ft bgs. The top of the Raritan Clay deepens to the south-southeast, as evidenced by clay depths of 1,000 ft bgs (or more) in borings installed offsite. The Raritan Clay Unit is of continental origin and consists of clay, silty clay, clayey silt, and fine silty sand. This member acts as a confining layer over the Lloyd Sand Unit. The Lloyd Sand Unit is also of continental origin, having been deposited in a large fresh water lacustrine

environment. The material consists of fine to coarse-grained sands, gravel, inter-bedded clay, and silty sand. These deposits form the Lloyd Aquifer.

The Upper Glacial Aquifer and the Magothy Aquifer comprise the aquifers of interest at the NWIRP. Regionally, these formations are generally considered to form a common, interconnected aquifer as the coarse nature of each unit near their contact and the lack of any regionally confining clay unit allows for the unrestricted flow of groundwater between the formations.

The Magothy Aquifer is the major source of public water in Nassau County. The most productive water bearing zones are the discontinuous lenses of sand and gravel that occur within the siltier matrix. The major water-bearing zones are coarse sand and gravel lenses located in the lower portion of the Magothy. The Magothy Aquifer is commonly regarded to function overall as an unconfined aquifer at shallow depths and a confined aquifer at deeper depths. The drilling program at the NWIRP has revealed that clay zones beneath the facility are common but laterally discontinuous. No confining clay units of facility-wide extent have been encountered. This is also the case for borings installed offsite.

Groundwater is encountered at a depth of approximately 50 ft bgs at the facility. Historically, because of pumping and recharge at the facility, groundwater depths have been measured to range from 40 to 60 ft bgs. The groundwater flow in the area is to the south-southeast.

2.0 FIELD PROGRAM

Three monitoring wells were installed in the vicinity of VPB165 between January 2016 and March 2016. Field investigation activities consisted of drilling, well installation, well development, sampling, soil/groundwater analysis, and surveying. Drilling during this investigation was performed by Delta Well and Pump Company of Ronkonkoma, New York. A description of these tasks is provided below.

2.1 Drilling and Well Construction

Monitoring wells RE131D1, RE131D2 and RE131D3 were installed using mud rotary drilling techniques (Figure 2). Depths of monitoring wells RE131D1, RE131D2 and RE131D3 were 455 ft, 595 ft and 685 ft respectively. Well construction details are summarized in Table 1. Boring logs with lithologic descriptions of the well screen interval are included in the Appendix A. 2015-2016 OU2 Groundwater Investigation VPB165 (Resolution Consultants, 2016) documents the installation of this VPB including detailed lithologic descriptions, continuous gamma plot and multiple Volatile Organic Compounds (VOC) sample results over the entire boring length.

Prior to installing each monitoring well, the results of the groundwater samples, the geophysical logs, lithology and field data from the vertical profile borings were analyzed. Screen intervals were determined based on this analysis: intervals with the highest VOC concentrations as measured in the hydropunch samples, and coincident intervals with the highest apparent permeability based on the gamma logs. During the monitoring well installation, split spoon samples were collected every 5 ft in the screen interval. One soil sample per monitoring well was analyzed for Total Organic Carbon (TOC) via United States (US) Environmental Protection Agency (EPA) series SW-846 method 9060A by Katahdin Analytical Services (Katahdin). Data validation of TOC data was performed by Resolution Consultants. Data validation packages and analytical data tables are included in Appendix A.

Wells were constructed of 4-inch diameter, Schedule 80, National Sanitation Foundation-approved polyvinylchloride (PVC) riser pipe and .010-slot well screen. Wells were completed at the surface with a 12-inch diameter steel curb box. Well risers were set below grade and fit with lockable J plugs. Detailed monitoring well construction diagrams are included in Appendix A.

2.2 Well Development

Following installation, all monitoring wells were developed to evacuate silts and other fine-grained materials and to establish the filter pack to promote a hydraulic connection between the well and

the surrounding aquifer. Well development was not initiated until at least 24 hours after well installation.

Monitoring well screens were developed using a combination of air lifting, manual surging, and pumping with a submersible pump. Turbidity was monitored during development to determine stabilization. In compliance with New York State Department of Environmental Conservation (NYSDEC) policy, wells were developed until turbidity was less than 50 nephelometric turbidity units (NTUs) if possible. Table 2 summarizes total pumped volume from air and pump development and final turbidity. Well development logs are included in Appendix A.

2.3 Sampling

Following development, wells were allowed to stabilize for at least 2 weeks prior to groundwater sampling in accordance with low flow sampling procedures. Wells were purged using a bladder pump with a drop tube intake placed at the approximate midpoint of the screened interval. The following water quality parameters were continuously measured: water temperature, pH, conductivity, oxidation-reduction potential, dissolved oxygen and turbidity. Groundwater analytical samples were collected when water quality parameters stabilized. Samples were analyzed for VOCs via method 8260C and 1,4-dioxane via Method 8270D SIM by Katahdin. All development and purge water was managed as investigation derived waste (IDW). Groundwater sample logs and data validation packages are included in Appendix A.

Monitoring wells RE131D1, RE131D2 and RE131D3 were sampled by Resolution Consultants on April 21, 2016. Analytical results and stabilized field parameters for these data are summarized in Table 3 and 4, respectively. Data validation is documented in Appendix A. These monitoring wells will be included in quarterly sampling as part of the Navy's ongoing Environmental Restoration Program.

2.4 Decontamination and Investigation Derived Waste (IDW)

Resolution Consultants utilized dedicated and disposable sampling equipment when possible to avoid the potential for cross-contamination of samples. The sampling equipment included dedicated plastic scoops, disposable Teflon or polyethylene tubing, disposable gloves, and laboratory supplied sample bottles. Hand held equipment and split spoons were decontaminated using Luminox and water wash, a potable water rinse, followed by a distilled water rinse. Water was collected in 5-gallon pails or 55-gallon drums. Non dedicated sampling equipment was decontaminated as outlined in the UFP SAP Addendum - *Groundwater Sampling Using Low Stress (Low Flow) Purging and Sampling Protocol* (Resolution Consultants, 2013b).

As part of the IDW management practices and in accordance with the SAP, the investigation waste (consisting of soil cuttings, drilling muds, IDW fluids, and personal protective equipment [PPE]) generated during the groundwater monitoring well installation and sampling was containerized and staged at NWIRP Bethpage.

IDW solids were containerized in roll offs. Representative samples from each roll off were submitted to Katahdin for analysis of:

- Target Compound List (TCL) VOCs
- TCL Semi-volatile Organic Compounds (SVOCs)
- Toxicity Characteristic Leaching Procedure (TCLP) Metals
- Polychlorinated Biphenyls (PCBs)
- Total petroleum hydrocarbons
- Corrosivity
- Ignitability
- Reactive Cyanide
- Reactive Sulfide
- Paint Filter

IDW fluid generated during well development and purging was containerized in frac tanks and stored at NWIRP Bethpage for characterization and ultimate disposal to the Publicly Owned Treatment Works (POTW), in accordance with the facilities existing discharge permit. A representative water sample was collected from each frac tank and submitted to Katahdin for analysis of VOCs via Method SW 624, pH via Method SW 9040B, PCBs via Method 8082 and Total Metals via Method SW 846. All analytical criteria were met for disposal of water.

2.5 Surveying

A survey of the monitoring well locations was conducted at the end of fieldwork by C. T. Male, Inc., of Latham, NY, under the direct supervision of Resolution Consultants. The locations were tied into the existing base map developed for this investigation. The survey elevation is referenced to the North American Vertical Datum (NAVD) 1988 and has a vertical accuracy of 0.01 foot. Vertical control is based on observations of the Continuously Operating Reference (COR) Stations Queens and Central Islip. The horizontal location is referenced to the North American Datum (NAD) 1983 (2011) NY. Long Island Zone 3104 and has an accuracy of 0.1 foot. Local horizontal and vertical

control is based on Global Positioning System (GPS) observations using the NYSNet Real Time Network.

A table of survey data (latitude/longitude, northing/easting, elevations of ground, rim and PVC) and a survey map is included in Appendix A.

3.0 REFERENCES

Geraghty and Miller, Inc., 1994. *Remedial Investigation Report, Grumman Aerospace Corporation, Bethpage, New York.* Revised September 1994.

Resolution Consultants, 2013a. *United Federal Programs Sampling and Analysis Plan, Site OU-2 Offsite Trichloroethene (TCE) Groundwater Plume Investigation, Bethpage, New York.* April 2013.

Resolution Consultants, 2013b. UFP SAP Addendum, *Groundwater Sampling Using Low Stress (Low Flow) Purging and Sampling Protocol*. November 2013.

Resolution Consultants, 2013c. UFP SAP Addendum, *Installation of Vertical Profile Borings and Monitoring Wells*. December 2013.

Resolution Consultants, 2016. 2015-2016 OU2 Groundwater Investigation VPB165, Bethpage, NY. June 2016.

Smolensky, D., and Feldman, S., 1990. *Geohydrology of the Bethpage-Hicksville-Levittown Area, Long Island, New York, U.S.* Geological Survey Water-Resourced Investigations Report 88-4135, 25 pp.

Tables

TABLE 1 MONITORING WELL CONSTRUCTION SUMMARY 2016 OU2 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

MONITORING WELL	WELL COMPLETION DATE	GROUND ELEVATION (MSL)	PVC ELEVATION (INNER CASING) (MSL)	WELL DEPTH (ft bgs)	CASING DEPTH (ft bgs)	SCREEN INTERVAL (ft bgs)	SUMP DEPTH INTERVAL (ft bgs)	BORING DEPTH (ft bgs)
RE131D1	2/19/2016	86.33	85.94	455	54	430 - 450	450 - 455	467
RE131D2	2/3/2016	86.25	85.72	595	54	565 - 590	590 - 595	607
RE131D3	3/7/2016	86.22	85.90	685	53	660 - 680	680 - 685	697

MSL - mean sea level

ft bgs - feet below ground surface

TABLE 2 MONITORING WELL DEVELOPMENT SUMMARY 2016 OU2 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

	AIR DEVEL	OPMENT	PUM	IP DEVELOPME	APPROX. TOTAL	FINAL	
MONITORING WELL	DATE			FINAL PUMP DEPTH (FT BGS)	APPROX. VOLUME (GAL)	DEVELOPMENT VOLUME (GAL)	TURBIDITY (NTUs)
RE131D1	3/22/2016	5,000	3/25/2016	430-450	6,000	11,000	1.34
RE131D2	3/21/16, 3/22/16	5,500	3/24/2016	565-590	6,000	11,500	7.02
RE131D3	3/23/2016	5,500	3/28/2016	660-680	4,100	9,600	1.07

GAL - gallon

FT BGS - feet below ground surface NTUs - Nephelometric Turbidity Units

TABLE 3. ANALYTICAL DATA SUMMARY 2016 OU2 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

Location	NYSDEC	RE131D1	RE131D1	RE131D2	RE131D3
Sample Date	Groundwater	4/21/2016	4/21/2016	4/21/2016	4/21/2016
Sample ID	Guidance or Standard Value (Note 1)	RE131D1-GW- 042116	DUPLICATE- 042116	RE131D2-GW- 042116	RE131D3-GW- 042116
Sample type code	(11010-1)	N	FD	N	N
VOC 8260C (ug/L)					
1,1,1-TRICHLOROETHANE	5	<0.50 U	<0.50 U	<0.50 U	<0.50 U
1,1,2,2-TETRACHLOROETHANE	5	<0.50 U	<0.50 U	<0.50 U	<0.50 U
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	5	4.4	4.2	<1.0 U	91
1,1,2-TRICHLOROETHANE	1	<0.50 U	<0.50 U	<0.50 U	<0.50 U
1,1-DICHLOROETHANE	5	<0.50 U	<0.50 U	<0.50 U	<0.50 U
1,1-DICHLOROETHENE	5	0.71 J	0.56 J	<0.50 U	0.54 J
1,2,4-TRICHLOROBENZENE	5	<0.50 U	<0.50 U	<0.50 U	<0.50 U
1,2-DIBROMO-3-CHLOROPROPANE	0.04	<0.75 U	<0.75 U	<0.75 U	<0.75 U
1,2-DIBROMOETHANE	NL	<0.50 U	<0.50 U	<0.50 U	<0.50 U
1,2-DICHLOROBENZENE	3	<0.50 U	<0.50 U	<0.50 U	<0.50 U
1,2-DICHLOROETHANE	5	<0.50 U	<0.50 U	<0.50 U	<0.50 U
1,2-DICHLOROETHENE, TOTAL	5	4.1	3.4	3.8	0.24 J
1,2-DICHLOROPROPANE	1	<0.50 U	<0.50 U	<0.50 U	<0.50 U
1,3-DICHLOROBENZENE	3	<0.50 U	<0.50 U	<0.50 U	<0.50 U
1,4-DICHLOROBENZENE	3	<0.50 U	<0.50 U	<0.50 U	<0.50 U
1,4-DIOXANE (Method 8270D_SIM)	NL	8.7	10	8.2	1.1
2-BUTANONE	50	<2.5 U	<2.5 U	<2.5 U	<2.5 U
2-HEXANONE	50	<2.5 U	<2.5 U	<2.5 U	<2.5 U
4-METHYL-2-PENTANONE	NL	<2.5 U	<2.5 U	<2.5 U	<2.5 U
ACETONE	50	<2.5 UJ	<2.5 UJ	<2.5 UJ	<2.5 UJ
BENZENE	1	<0.50 U	<0.50 U	<0.50 U	<0.50 U
BROMODICHLOROMETHANE	50	<0.50 U	<0.50 U	<0.50 U	<0.50 U
BROMOFORM	50	<0.50 U	<0.50 U	<0.50 U	<0.50 U
BROMOMETHANE	5	<1.0 U	<1.0 U	<1.0 U	<1.0 U
CARBON DISULFIDE	60	<0.50 U	<0.50 U	<0.50 U	<0.50 U
CARBON TETRACHLORIDE	5	<0.50 U	<0.50 U	<0.50 U	<0.50 U
CHLOROBENZENE	5	<0.50 U	<0.50 U	<0.50 U	<0.50 U
CHLOROETHANE	5	<1.0 U	<1.0 U	<1.0 U	<1.0 U
CHLOROFORM	7	3.5	3.5	<0.50 U	<0.50 U
CHLOROMETHANE	5	<1.0 U	<1.0 U	<1.0 U	<1.0 U
CIS-1,2-DICHLOROETHENE	5	4.1	3.4	3.8	0.24 J
CIS-1,3-DICHLOROPROPENE	0.4	<0.50 U	<0.50 U	<0.50 U	<0.50 U
CYCLOHEXANE	NL	<0.50 U	<0.50 U	<0.50 U	<0.50 U
DIBROMOCHLOROMETHANE	5	<0.50 U	<0.50 U	<0.50 U	<0.50 U
DICHLORODIFLUOROMETHANE	5	<1.0 UJ	<1.0 UJ	<1.0 UJ	<1.0 UJ
ETHYLBENZENE	5	<0.50 U	<0.50 U	<0.50 U	<0.50 U
ISOPROPYLBENZENE	5	<0.50 U	<0.50 U	<0.50 U	<0.50 U
M- AND P-XYLENE	NL	<1.0 U	<1.0 U	<1.0 U	<1.0 U
METHYL ACETATE	NL	<0.75 U	<0.75 U	<0.75 U	<0.75 U
METHYL CYCLOHEXANE	NL	<0.50 U	<0.50 U	<0.50 U	<0.50 U
METHYL TERT-BUTYL ETHER	10	<0.50 U	<0.50 U	<0.50 U	<0.50 U
METHYLENE CHLORIDE	5	<2.5 U	<2.5 U	<2.5 U	<2.5 U
O-XYLENE	NL	<0.50 U	<0.50 U	<0.50 U	<0.50 U
STYRENE	5	<0.50 U	<0.50 U	<0.50 U	<0.50 U
TETRACHLOROETHENE	5	7.6	6.5	6.0	1.5
TOLUENE	5	<0.50 U	<0.50 U	<0.50 U	<0.50 U
TRANS-1,2-DICHLOROETHENE	5	<0.50 U	<0.50 U	<0.50 U	<0.50 U
TRANS-1,3-DICHLOROPROPENE	0.4	<0.50 U	<0.50 U	<0.50 U	<0.50 U
TRICHLOROETHENE	5	88	79	41	3.8
TRICHLOROFLUOROMETHANE	5	<1.0 U	<1.0 U	<1.0 U	<1.0 U
VINYL CHLORIDE	2	<1.0 U	<1.0 U	<1.0 U	<1.0 U
XYLENES, TOTAL	5	<1.5 U	<1.5 U	<1.5 U	<1.5 U

TABLE 3. ANALYTICAL DATA SUMMARY 2016 OU2 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

Notes:

1 New York State Department of Environmental Conservation Division of Water Technical and Operation Guidance series (6 NYCRR 700-706, Part 703.5 summarized in TOGS 1.1.1)

Ambient water quality standards and groundwater effluent limitations, class GA; NL = Not Listed

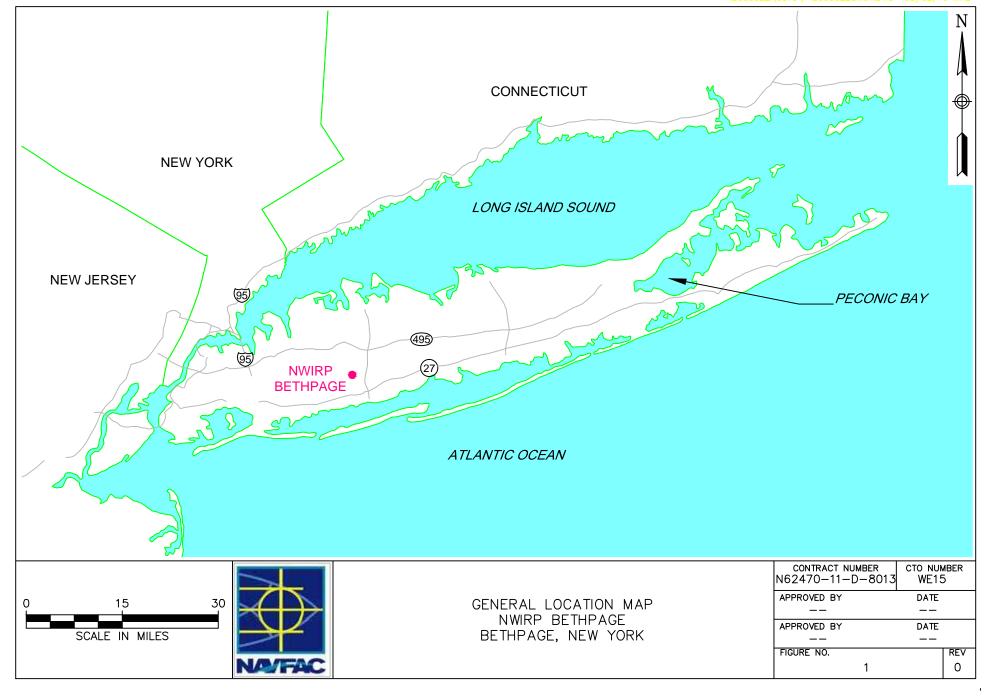
Bold = Detected; **Bold and Italics**=Not detected exceeds NYS Groundwater Standards or guidance value Yellow highlighted values exceed Groundwater Standards or guidance value

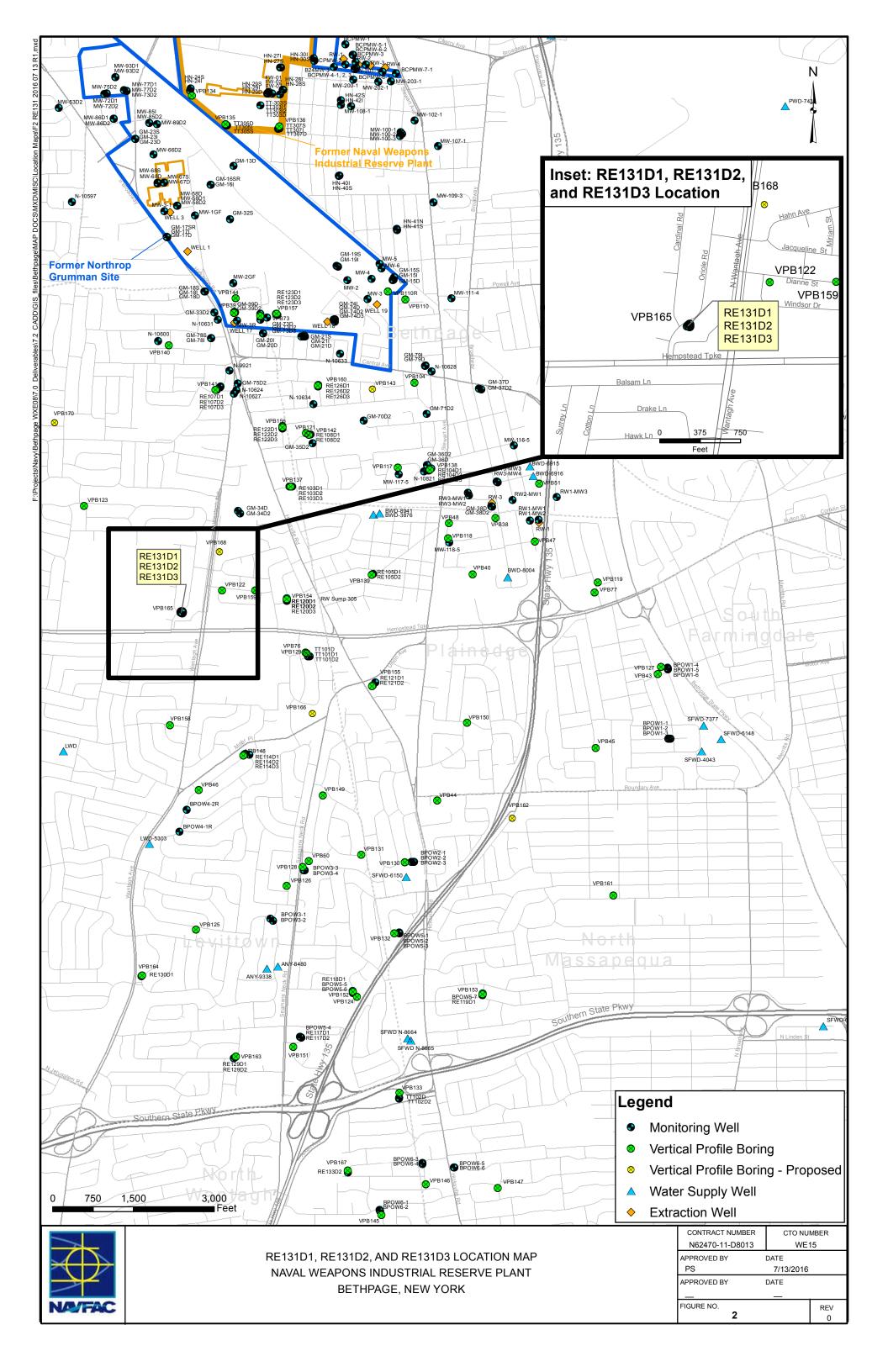
Sample type codes: N - normal environmental sample, $\,$ FD - field duplicate

U = Nondetected result. The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
 UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte.
 J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

TABLE 4 STABILIZED FIELD PARAMETERS 2016 OU2 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

Well	Date	Temperature (°C)	рН	Specific Conductance (µS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Depth to water (ft bgs)	Flow rate (ml/min)
RE131D1	4/21/2016	15.98	5.50	0.134	2.72	248.5	23.1	76.62	500
RE131D2	4/21/2016	14.87	5.53	84	4.86	163.2	118	37.32	700
RE131D3	4/21/2016	17.12	5.03	0.042	6.29	304.4	2.59	37.74	350


°C - degrees Celsius


 $\mu S/cm$ - Microsiemens per Centimeter

mg/L - milligrams per liter

mV - Millivolts

NTU - Nephelometric Turbidity Unit ft bgs - feet below ground surface ml/min - milliliters per minute **Figures**

Appendices

Appendix A

RE131D1, RE131D2, RE131D3

Section 1

Boring Logs

Boring Log

BORING #: **RE131D1**Sheet 1 of 2

Client: Department of the Navy, Naval Facilities	Logged By: V. Varricchio			
Location: Oriole & Cardinal Rd, Levittown, NY	Drilling Company: Delta Well & Pump			
Project # : 60240739	Project #: 60240739 Ground Elevation (msl): 86.33			
Start Date: 2/10/2016	Drilling Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):		
Finish Date: 2/19/2016	Northing: 204367.45 Easting: 1123114.27	Total Depth (ft): 467.0		

ОЕРТН (ft)	PID (ppm)	Formation	SOSO	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction
50					0-433 ft bgs: See VPB 165 for Descriptions		10" Diameter Steel Casing
100							
150							Bentonite Grout
200							
250							4" Diameter Schedule 80 PVC Riser
350							80 PVC Kiser

Boring Log

BORING #: **RE131D1**Sheet 2 of 2

Client: Department of the Navy, Naval Facilities	Logged By: V. Varricchio	
Location: Oriole & Cardinal Rd, Levittown, NY	Drilling Company: Delta Well & Pump	
Project # : 60240739	Well Screen Interval (ft): 430-450	
Start Date: 2/10/2016	Drilling Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):
Finish Date: 2/19/2016	Northing: 204367.45	Total Depth (ft): 467.0

	(mc	tion	v	HIC		l	
DEPTH (ft)	PID (ppm)	Formation	SOSO	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction
					0-433 ft bgs: See VPB 165 for Descriptions (continued)		4" Diameter Schedule 80 PVC Riser (continued)
396 398 400 402 404 406 408 410 411 411 416 418 420 422 424 426 428							#00 Filter Sand #1 Filter Sand
432 434 436 438	0.0		SP		Light gray (10YR 7/2) poorly graded fine SAND Light gray (10YR 7/2) poorly graded fine SAND, few Silt		_
440 442 444 446	0.0		SP-SM SM		Light gray (10YR 7/1) poorly graded fine SAND, little Silt		4" Diameter Schedule 80 PVC, 10 Slot Well Screen (430-450 ft bgs)
448 448 450 452 454 454	0.0		SP		Light gray (10YR 7/2) poorly graded fine SAND, trace Silt		Sump
458 460 462 464 464					End of boring at 467.0 ft. bgs.		#1 Sand to Bottom

Boring Log

BORING #: **RE131D2**Sheet 1 of 2

Client: Department of the Navy, Naval Facilities	Logged By: V. Varricchio	
Location: Oriole & Cardinal Rd, Levittown, NY	Drilling Company: Delta Well & Pump	
Project # : 60240739	Ground Elevation (msl): 86.25	Well Screen Interval (ft): 565-590
Start Date: 1/26/2016	Drilling Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):
Finish Date: 2/3/2016	Northing: 204359.42 Easting: 1123099.42	Total Depth (ft): 607.0

DEPTH (ft)	PID (ppm)	Formation	uscs	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction
U					0-568 ft bgs: See VPB 165 for Descriptions		10" Diameter Steel Casing
50							
150							
200							
250						•	Bentonite Grout
300							
350							
400							
450						4	4" Diameter Schedule 80 PVC Riser

Boring Log

BORING #: **RE131D2**Sheet 2 of 2

Client: Department of the Navy, Naval Facilities	Logged By: V. Varricchio						
Location: Oriole & Cardinal Rd, Levittown, NY	Drilling Company: Delta Well & Pump						
Project # : 60240739	Ground Elevation (msl): 86.25	Well Screen Interval (ft): 565-590					
Start Date: 1/26/2016	Drilling Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):					
Finish Date: 2/3/2016	Northing: 204359.42	Total Depth (ft): 607.0					

DEPTH (ft)	РІО (ррт)	Formation	SOSU	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction
490 492 494 496 498 500 502 504 506 508 510					0-568 ft bgs: See VPB 165 for Descriptions (continued)		4" Diameter Schedule 80 PVC Riser (continued)
514 516 518 520 522 524 526 528 530 532 534 536 538							#00 Filter Sand
540 542 544 546 548 550 552 554 556 558 560 562 564 566							#1 Filter Sand
568 570 572 574	0.0		SW SP	/. / /. / /. 	Very pale brown (10YR 8/5), well graded fine to medium SAND, trace Silt Pale brown (2.5Y 7/4), poorly graded medium SAND		
576 578 580 582 584	0.0		SP		Light gray (10YR 7/1), poorly graded fine SAND		4" Diameter Schedule 80 PVC, 10 Slot Well Screen (565-590 ft bgs)
586 588 590 592 594 596	0.0		SW	:/*'/:/*'/:/	No Recovery Light gray (10YR 7/1), well graded fine to medium SAND		Sump
598 600 602							#1 Sand to Bottom

Boring Log

BORING #: **RE131D3**Sheet 1 of 2

Client: Department of the Navy, Naval Facilities	Logged By: V. Varricchio	
Location: Oriole & Cardinal Rd, Levittown, NY	Drilling Company: Delta Well & Pump	
Project # : 60240739	Well Screen Interval (ft): 660-680	
Start Date: 2/25/2016	Drilling Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):
Finish Date: 3/7/2016	Northing: 204350.99 Easting: 1123115.19	Total Depth (ft): 697.0

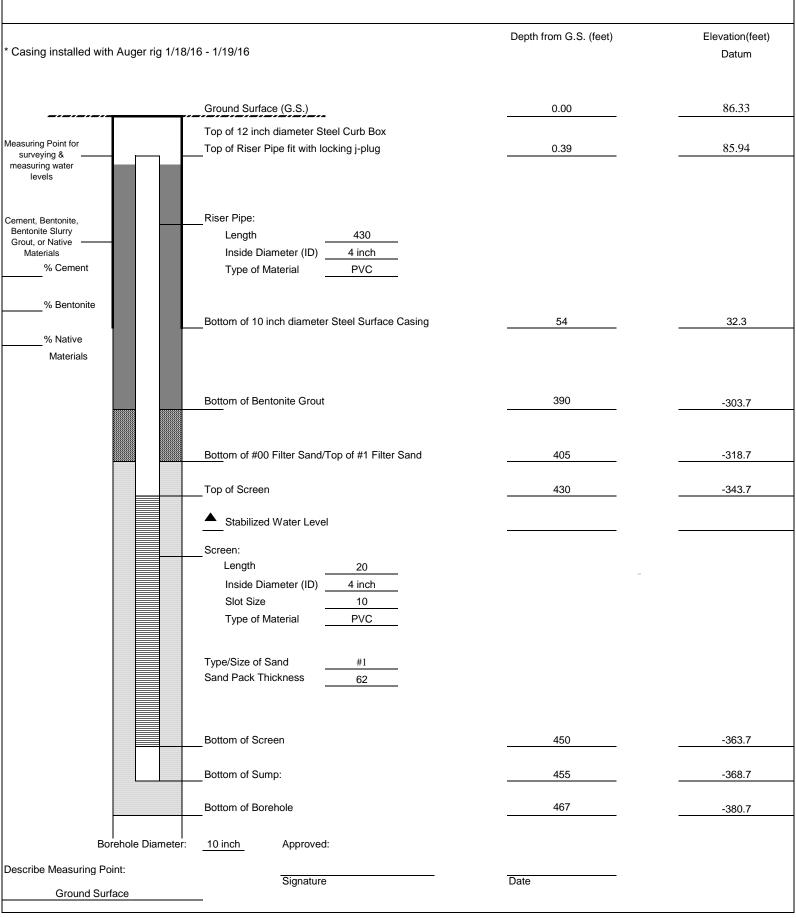
рертн (ft)	PID (ppm)	Formation	SOSO	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction
0					0-663 ft bgs: See VPB 165 for Descriptions		10" Diameter Steel Casing
50							
100							
150							
200							
250							Bentonite Grout
300							
350							
400							
450							
500							4ll Diameter Calcadid
550							4" Diameter Schedule 80 PVC Riser

Boring Log

BORING #: **RE131D3**Sheet 2 of 2

Client: Department of the Navy, Naval Facilities	Logged By: V. Varricchio	
Location: Oriole & Cardinal Rd, Levittown, NY	Drilling Company: Delta Well & Pump	
Project #: 60240739	Well Screen Interval (ft): 660-680	
Start Date: 2/25/2016	Drilling Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):
Finish Date: 3/7/2016	Northing: 204350.99 Easting: 1123115.19	Total Depth (ft): 697.0

DEPTH (ft)	PID (ppm) PID (ppm) PID (ppm) CRAPHIC LOG		MATERIAL DESCRIPTION	Well	Well Construction		
598 600 602 604 606 608 610 612 614 616 618 620 622					0-663 ft bgs: See VPB 165 for Descriptions (continued)		4" Diameter Schedule 80 PVC Riser (continued)
626 628 630 632 634 636 638 640 642 644							#00 Filter Sand
648 650 652 654 656 658 660 662 664	0.0		SP		White (10YR 8/1), poorly graded fine SAND		#1 Filter Sand
668	0.0		GW		Light Gray (10YR 7/2), well graded fine to coarse subangular GRAVEL with some well graded medium to coarse subangular Sand		4" Diameter Schedule 80 PVC,
674	0.0		SM		Light gray (10YR 7/1), poorly graded fine SAND with some Silt		10 Slot Well Screen (660-680 ft bgs)
678 680 682 684 686 688	0.0		SM	,,,,,,,	Light gray (10YR 7/2) SILT with little fine Sand		Sump
690							#1 Sand to Bottom


Section 2

Monitoring Well Construction Logs

Client:	NAVFAC	Project Number:	60266526	WELL	ID: RE131D1
Site Locati	on: NWIRP BETHPAC	E, NY			
Well Locat	ion: Oriole & Cardinal F	d, Levittown, NY		Date Installed:	2/10/2016 - 2/19/2016 *
Method:	MUD ROTARY			Inspector:	V. Varricchio
Coords:	Northing: 204367-45	Fasting: 1123114.2	7	Contractor:	DELTA WELL & PLIMP

MONITORING WELL CONSTRUCTION DETAIL

Cl	lient:	NAVFAC	Project Number: 60266526	WELL ID: RE131D2
Si	te Location	n: NWIRP BETHPAG	E, NY	
W	ell Locatio	on: Oriole & Cardinal R	d, Levittown, NY	Date Installed: 1/26/2016 - 2/3/2016 *
M	lethod:	MUD ROTARY		Inspector: V Varricchio
Co	oords:	Northing: 204359.42	Easting: 1123099.42	Contractor: DELTA WELL & PUMP

MONITORING WELL CONSTRUCTION DETAIL

Casing installed with Auger rig 1/14/16 - 1/15/16	Depth from G.S. (feet)	Elevation(feet) Datum
Ground Surface (G.S.)	0.00	86.25
Top of 12 inch diameter Steel Curb Box		
asuring Point for surveying &	0.53	85.72
ment, Bentonite, Riser Pipe:		
entonite Slurry Length 565		
rout, or Native ————————————————————————————————————	-	
% Cement Type of Material PVC	- -	
% BentoniteBottom of 10 inch diameter Steel Surface	e Casing54	32.3
% Native Materials		
Bottom of Bentonite Grout	510	-423.8
Bottom of #00 Filter Sand/Top of #1 Filter	er Sand	-443.8
Top of Screen	565	-478.8
Stabilized Water Level		
Screen: Length 25		
Length25 Inside Diameter (ID) 4 inch	-	
Slot Size 10	-	
Type of Material PVC	- -	
Type/Size of Sand #1 Sand Pack Thickness 77	-	
Sand Pack Thickness	_	
Bottom of Screen	590	-503.8
Bottom of Sump:	595	-508.8
Bottom of Borehole	607	-520.8
Borehole Diameter: 10 inch Approved:		
scribe Measuring Point:		
Signature Ground Surface	Date	

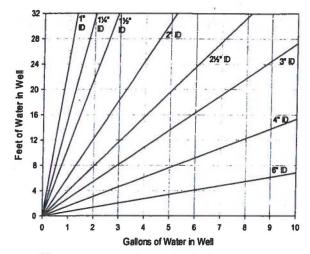
Client:	NAVFAC	Project Number:	60266526	WELL	ID: RE131D3
Site Location	on: NWIRP BETHPAC	E, NY			
Well Locati	on: Oriole & Cardinal Ro	d, Levittown, NY	Date Installed:	2/25/2016 - 3/7/2016 *	
Method:	MUD ROTARY		Inspector:	V. Varricchio	
Coords:	Northing: 204350 99	Facting: 1123115.1	Q	Contractor	DELTA WELL & PLIMP

MONITORING WELL CONSTRUCTION DETAIL

asing installed with Auger rig 2/22	/16 - 2/23/16	Depth from G.S. (feet)	Elevation(feet) Datum
	Ground Surface (G.S.)	0.00	86.22
asuring Point for	Top of 12 inch diameter Steel Curb Box		
surveying &	Top of Riser Pipe fit with locking j-plug	0.32	85.90
ment, Bentonite,	Riser Pipe:		
entonite Slurry out, or Native	Length660		
Materials	Inside Diameter (ID) 4 inch		
% Cement	Type of Material PVC		
% Bentonite	Bottom of 10 inch diameter Steel Surface Casing	53	33.2
% Native Materials			
	Bottom of Bentonite Grout	618	-531.8
		<u> </u>	
	Bottom of #00 Filter Sand/Top of #1 Filter Sand	635	-548.8
	Top of Coroon	000	F72.0
	Top of Screen	660	-573.8
	▲ Stabilized Water Level		-
	Screen:		
	Length 20		
	Inside Diameter (ID) 4 inch	_	
	Slot Size 10		
	Type of Material PVC		
	Type/Size of Sand #1		
	Sand Pack Thickness 62		
	Bottom of Screen	680	-593.8
	Bottom of Golden		
	Bottom of Sump:	685	-598.8
	Bottom of Borehole	697	-610.8
Borehole Diameter:	10 inch Approved:		
cribe Measuring Point:	-		
Ground Surface	Signature	Date	

Section 3

Groundwater Sample Log Sheets

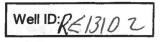

Well ID: RF 1310/

Low Flow Ground Water Sample Collection Record

Client:_ Project N Site Loca		NW	IRP - Be 602	thpage 66526		Date: 4	-21-16	Tir	me: Start /2 Finish /	
	Conds:	Suns	ne 70			Collector(s).			
1. WAT	ER LEVEL	DATA:	(measi	ured from Top c. Length of			3.47 (a-b)		Casing Diam	
b. Wa	ater Table [Depth	76.53	d. Calculated	l System \	/olume (see	back)			
2. WELI	L PURGE I	DATA	(5)							
- Tem - pH	ceptance Coperature	3% <u>+</u> 1	.0 unit	(see workplan) -D.O. - ORP - Drawdown	10% <u>+</u> 10m < 0.3'	iV				
c. Fie	ld Testing I	Equipm	ent used	d: Ma YSI	ake		Model MPS 556			Number 57 ISX
<u>Time</u> (24hr)	Volume Removed (Liters)	Temp.	<u>рН</u>	Spec. Cond.	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Drawdown (feet)	Color/Odor
1300	(2.(0.0)		5.22	0.14/	6.26	2609		500	1000	034
1320			5.39	0.131	5.62	262.1	37.8	500	36-60	Chenr
1325			5.42	0-134	5.74	200.1	13.7	200	76.60	clear
1330		_	5-41	0.133	4.26	259.7	14.1	500	36.60	T(
1345	5 pul	_	5.42	0.137	7.54	253.3	17.8	500	76.60	(1
1350	ceptance c		5.47	0,133	7.40 Yes No	253.7 N/A	20.2	500	16.60	(r
Ha Ha	as required as required ave parame If no or N/	volume turbidit ters sta	been re y been r bilized	eached						(continued on back)
Sample II Re 131	D1-GW-	ntainer	Туре	No. of Conta	- 11	Prese	vation	Analysis	s Req.	Time 1430
REIJID	1-lu-04	1216	Yonk	3		Нс	(VO		1470
T)UP LIC	AT	C	PLLEC	ED	HE	RE			1530
Commen	ts Pun	ng hi	beth	z M						
Signature					7			Date _	4/z1/1	/ -

Purge Volume Calculation

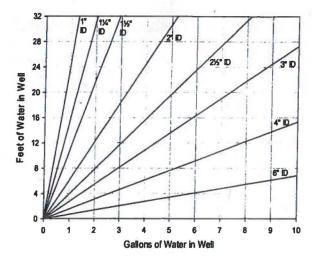
Volume /	Linear F	t. of Pipe
ID (in)	Gallon	Liter
0.25	0.0025	0.0097
0.375	0.0057	0.0217
0.5	0.0102	0.0386
0.75	0.0229	0.0869
1	0.0408	0.1544
1.25	0.0637	0.2413
1.5	0.0918	0.3475
2	0.1632	0.6178
2.5	0.2550	0.9653
3	0.3672	1.3900
4	0.6528	2.4711
6	1.4688	5.5600


1 screen volume

15 ft = 37.1 L / 9.8 G 20 ft = 49.6 L / 13.1 G 25 ft = 61.7 L / 16.3 G

Well ID: RE131 DI

continued	from front)									
Time (24 hr)	Volume Removed (Liters)	Temp (°C)	рH	Spec. Cond. (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Depth to water (ft)	Color/Odor
(755		16.23	5.48	0.134	3.23	252.5	16.9	500	36.60	clear Inon
1400		16.23	5.49	0-174	3.44	252.5	18.7	(00	76.60	Ne .
1405	10 901	16.22	5.50	0.134	7.70	251.7	17.4	500	76.60	ч
1410		16.05	5.50	0.135	3.00	250.8	19.1	500	76.60	4
1415		15.90	5.51	0.134	2.89	249.3	22.2	500	76.60	и
1420		15.85	5.51	0.133	2.85	247.3	22.0	500	76.61	at 1
1425	13.5 gal	15.98	5.50	0.134	2.72	248.5	23.1	500	76.67	/\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
								10.0		
	ž				* "		-			
						,				
										V-0-2-1
										- V
			\dashv							
-				,						
+							-			
		-								
, i								+		



Low Flow Ground Water Sample Collection Record

Client:_ Project N				66526)ate: 4	-21-16	Tir	me: Start /:	
Site Loca Weather		Manie		Parking 1	5b (Collector(s)	: <u>FB</u>			
a. To	tal Well Le	ngth 52	30	c. Length of	Water Col	umn	(a-b)		Casing Diam	eter/Material
2. WELI	L PURGE I	DATA	7.8)				
b. Ac - Tem - pH		Criteria de 3%		see workplan -D.O. - ORP - Drawdown	10% <u>+</u> 10m	V				
c. Fie	ld Testing	Equipme	nt used	i: M	ake		Model		Serial	Number
	No.				I		556		644	
			441						Y1 3 7 7 7 7 1	
Time (24hr)	Volume Removed (Liters)	Temp.	Hq	Spec. Cond. (μS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Drawdown (feet)	Color/Odor
1320	Hart	april	ge.	Larry	4				37.22	
1925	19.51	1550		75	9.80	180.5	23.9	600	37.07	Clean
330	-	15.20		74	8.90	178.9		706	31.24	Clea.
1335	+	15.205		74	8,62 \$,89	182.7	10.6	F00	37.27	
12 115	5 Gal	15.00 5		81	7.07	167.6	140	700	37-30	can
13 50	2 400	15005		80	6,83	176.4	184		37.27	- 2
d. Ac Ha Ha	cceptance of as required as required ave parame	criteria pa volume t turbidity eters stab	iss/fail been re been re bilized	emoved eached	Yes No					(continued on back)
3. SAMF	PLE COLLI	ECTION:		Method:	ninere	Prese	vation	Analysi	s Reg	— Time
DW	D - (2 W) - Q			A HCL	alliers	VOC	valion	Analysis	s neq.	1450
	3-(2M-0			2 A when	-1,	4-Di	mane			
Commen	ts <u>25 '</u>	Scree	en							
Signature	· Fa	renell i	Bell					Date	4/24	116

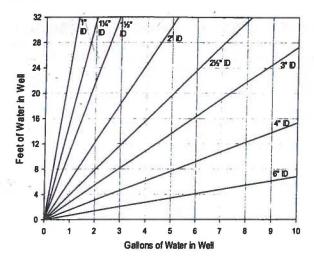
Purge Volume Calculation

Volume /	Linear F	t. of Pipe
ID (in)	Gallon	Liter
0.25	0.0025	0.0097
0.375	0.0057	0.0217
0.5	0.0102	0.0386
0.75	0.0229	0.0869
1	0.0408	0.1544
1.25	0.0637	0.2413
1.5	0.0918	0.3475
2	0.1632	0.6178
2.5	0.2550	0.9653
3	0.3672	1.3900
4	0.6528	2.4711
6	1.4688	5.5600

1 screen volume

15 ft = 37.1 L / 9.8 G 20 ft = 49.6 L / 13.1 G 25 ft = 61.7 L / 16.3 G

Well ID:


(continued t	from front)									
	Volume									
Time	Removed	Temp	pН	Spec. Cond.	DO	ORP	Turbidity	Flow Rate	Depth to	Color/Odor
(24 hr)	(Liters)	(°C)		(mS/cm)	(mg/L)	(mV)	(NTU)	(ml/min)	water (ft)	
1400	-	141.97	5.42	81	6.35	176.6	-	700	37.30	Cloudy
1403	10 Gal	14.96	5.43	82	6.32	176.8	176	700	3F.29	
1410		14.92	5.44	81	6.24	176.8	170	700	37.30	1
145	,	141.87	5,46		5.80	176.0		700	37.30	- 13
1420	_	14.88	5.48		5.62	175.3	158	700	-	(
405			5.49		5,44				37.27	
1-130			532		5.20	169.8	133	700	37.31	
1-135	15 Gol.		5.50	84	5.50	168.2	128	700	37,30	
1440			5.53		4/ 25	165.8	110	700		
14-15	17Gal	14.87	5.53	841	4.86	163. 2	118	700	37.32	
14 50	∠	7	le	1 in						
\vdash										
							-			
-										
\vdash	Tree.									
	1504									
 					100		-			
	- 8									
			1							
								+		
\longrightarrow		1	1	1						
										1

Low Flow Ground Water Sample Collection Record

Client: NWIRP - Bet Project No: 602			thpage 66526		Date: 4	-21-16	Tir	me: Start /	230 am/p 530 am/p	
Site Loca		Min	The state of the s	Parling 1	at .				an Account of	
Weather	Conds:		unny			Collector(s)):			
1. WATE	ER LEVEL	DATA:	(measu	ured from To	p of Casin	g)			31 1 1	
a. Tot	al Well Le	nath A	175	c. Length of	Water Col	umn	(a-b)		Casing Diam	eter/Material
			£ 11.0					,	4-mch	OVC 200
b. Wa	iter Table	Depth_	37.62	d. Calculate	d System \	/olume (see	back)	13.190		
	PURGE of			and and		J. 7				
b. Acc	ceptance (Criteria d	defined (see workplan)	19.44	Ţ.	2 W.		JE Hel
	perature	3%		-D.O.	10%	*				
- pH		<u>+</u> 1	1.0 unit	- ORP	<u>+</u> 10m	١V				
- Sp. (Cond.	3%	6	- Drawdown	< 0.3'					
c Fiel	d Testing	Fauinm	ent user	d· M	ake		Model		Serial	Number
0. 1 101	.c roomig	-quipin	ont uset		SI		556			3253W
			14 2		nna	STATES	98703			9842
	Volume		_						4 4 4 4 4 4	
Time	Removed		pH -	Spec. Cond.		ORP	Turbidity	Flow Rate	Drawdown	Color/Odor
(24hr)	(Liters)	(°C)	5	(µS/cm)	(mg/L)	(mV)	(NTU)	(ml/min)	(feet)	411
1250		125	5.41	0.053	7.78	2809		700	37.65	OH
1315	<i>y</i>	17/10	522	0.051	6,52	291.2			37.63	1 99
1326	11/1	1857	5.34	0.051	6.36	284.7		J.S.T N	37.67	
1325		19.01	5.54	0.051	6.33	24.0	46.6			
1330		1876	5.30	0.050	6.62	287.5		400	37.69	4
1335		17.95		0.048	6.52	289.5	AL D	PAT IS	RITERIOR	. 1.04
	ceptance o	criteria p	oass/fail		Yes No	N/A			Programme and the	(continued on back
	s required									
	s required			eached						
Ha	ve parame									
	If no or N	/A - EXP	nain delo	ow. ur plunge	1:1	. 11	1.6-1	C/	ato -h	o ZEAL.
			CHO	ur pungo	mm,	: Could	10 921	7 pw 1	ar way	<u>= 3300 40</u>
. SAMP	LE COLLI	ECTION	4: N	Method:						
			-,	-11-						
Sample II) Co	ontainer	Туре	No. of Conta	ainers	Preser	vation	Analysis	s Req.	Time
RE131	03-6W.	04211	16 40	m/ 3		HC	1	VO	15	1500
		100	Mite	rampor ?		Nos	e	1400	sxane	1500
· · · · · · · · · · · · · · · · · · ·										
comment	s									
					Ų LIELE			941		
			1	OK	11				1/1	/
ignature			1 ale	I Kare	1		9	Date	4/21/	16

Purge Volume Calculation

0.000		
Volume /	Linear F	t. of Pipe
ID (in)	Gallon	Liter
0.25	0.0025	0.0097
0.375	0.0057	0.0217
0.5	0.0102	0.0386
0.75	0.0229	0.0869
1	0.0408	0.1544
1.25	0.0637	0.2413
1.5	0.0918	0.3475
2	0.1632	0.6178
2.5	0.2550	0.9653
3	0.3672	1.3900
4	0.6528	2.4711
6	1.4688	5.5600

1 screen volume

15 ft = 37.1 L / 9.8 G 20 ft = 49.6 L / 13.1 G 25 ft = 61.7 L / 16.3 G

Well ID:

(continued from front)

REBIN3

1250 1450

Time (24 hr)	Volume Removed (Liters)	Temp (°C)	pН	Spec. Cond. (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate	Depth to water (ft)	Color/Odor
1340	(Liters)	17.91	5.17	0.046	6.48	289.6	T	400	37.72	
1345		17.81	5.11	0.045	6.42	293.0	30.3		37.71	
1350		17.73	5.10	0.044	6.39	294.8	12.8	v		
1355	5gal	17.72	5.07	0.044	6.33	2957	12.7		37.73	
1400		17.82	5.07	0.043	6.33	297.6	8.02			
1405		17.89	5.05	0.043	6.30	299.7	6.17	400	37.74	
1410		17.74	5.04	0.043	6.30	300.0	5.13	350		
1415		17.42	5.03	0.043	6.39	304.9	6.15		37.72	
1420		17.37	5.08	0.043	6.14	300.4	5.70	350		
1425	r	17.56	5.09	0.043	6.13	2995	4.41		37.73	
1430		17.73	5.07	0.043	6.12	2996	4.09			
1435		17.84	5.08	0.043	6.07	300,1	7.61			
1440		17,77	5.05	0043	6.08	3 025	3.23	350	37.73	
1445	1000	17.69	5.04	0.043	6.12	3029	2.62			
1450		17.33	5.03	0.042		305.2	3.10			
455	1190	17.12	5.63	0.042	6.29	304.4	2.59	350	37.74	
	0									
1500										Sayde
	3. 3									
										- 1 - 1 - 1 - 1

Section 4 Analytical Data Validation

DATA VALIDATION REPORT

Project:	Regional Groundwater Investigation — NWIRP Bethpage					
Laboratory:	Katahdin Analytical					
Sample Delivery Group:	SJ2726					
Analyses/Method:	Volatile Organic Compounds by U.S. EPA SW-846 Method 8260C 1,4-Dioxane by U.S. EPA SW-846 Method 8270D via Selective Ion Monitoring (SIM)					
Validation Level:	3					
Project Number:	0888812477.SA.DV					
Prepared by:	Dana Miller/Resolution Consultants	Completed on: 05/31/2016				
Reviewed by:	Tina Cantwell/Resolution Consultants	File Name: SJ2726_8260C_8270D				

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage Site on 21 April 2016 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants, April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants, November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York. (Resolution Consultants, August 2014).

Sample ID	Matrix/Sample Type	Analysis
DUPLICATE-042116	Duplicate of RE131D1-GW-042116	8260C, 8270D_SIM
FB03-042116	Field Blank	8260C, 8270D_SIM
RE126D1-GW-042116	Groundwater	8260C, 8270D_SIM
RE126D2-GW-042116	Groundwater	8260C, 8270D_SIM
RE126D3-GW-042116	Groundwater	8260C, 8270D_SIM
RE131D1-GW-042116	Groundwater	8260C, 8270D_SIM
RE131D2-GW-042116	Groundwater	8260C, 8270D_SIM
RE131D3-GW-042116	Groundwater	8260C, 8270D_SIM
TRIP BLANK 042116	Trip Blank	8260C

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 8260C, Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry* (United States Environmental Protection Agency [U.S. EPA] 2006), *SW-846 Method 8270D, Semi volatile Organic Compounds by Gas Chromatograph/Mass Spectrometry* (U.S. EPA 2007), *U.S. Environmental Protection Agency Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review* (U.S. EPA, June 2008), and *Department of Defense Quality Systems Manual for Environmental Laboratories*, Version 4.2 (October 2010). In the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements, and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody) / sample integrity
- ✓ Holding times and sample preservation
- ✓ Gas chromatography/Mass spectrometer performance checks
- X Initial calibration (ICAL) / initial calibration verification (ICV) / continuing calibration verification (CCV)
- X Laboratory blanks / trip blanks / field blanks
- ✓ Surrogate spike recoveries
- X Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample / laboratory control sample duplicate results
- ✓ Field duplicates
- ✓ Internal standards
- ✓ Sample results/reporting issues

The symbol (\checkmark) indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. Acceptable data parameters for which all criteria were met and no qualification was performed, and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further. The symbol (X) indicates that a QC non-conformance resulted in the qualification of data. Any QC non-conformance that resulted in the qualification of data is discussed below.

RESULTS

Initial Calibration / Initial Calibration Verification / Continuing Calibration Verification

The ICAL is evaluated to ensure that the instrument was capable of producing acceptable quantitative data prior to the analysis of environmental samples. The ICV is evaluated to assess the accuracy of the ICAL standards. The CCV is evaluated to determine whether the instrument was within acceptable calibration throughout the period in which samples were analyzed.

Calibration data were reviewed for conformance with the QC acceptance criteria to ensure that:

- The ICAL percent relative standard deviation, correlation coefficient/coefficient of determination, and/or response factor method acceptance criteria were met
- The ICV standard percent recovery acceptance criteria were met
- The CCV method percent difference or percent drift and response factor acceptance criteria were met
- The retention time method acceptance criteria were met

Data qualification to the analytes associated with the specific ICAL was as follows:

ICAL Linearity Non-conformance:

Cuitorio	Actions				
Criteria	Detected Results	Non-detected Results			
%RSD >15% and quantitation based on mean response factor	J	ΩΊ			

Notes:

%RSD = Relative standard deviation

J = Estimated

UJ = Undetected and estimated

Data qualification to the analytes associated with the specific ICV was as follows:

ICV Recovery Non-conformance:

Cuitonia	Actions				
Criteria	Detected Results	Non-detected Results			
Recovery >120%	J	UJ			
Recovery < 80%	J	UJ			

Notes:

J = Estimated

UJ = Undetected and estimated

Data qualification to the analytes associated with the specific CCV was as follows:

CCV Linearity Non-conformance:

Critorio	Actions				
Criteria	Detected Results	Non-detected Results			
%Difference or %Drift > 20%	J	UJ			

Notes:

J = Estimated

UJ = Undetected and estimated

ICV non-conformances are summarized in Attachment A in Table A-1.

Laboratory Blanks / Trip Blanks / Field Blanks

Blanks are assessed to determine the existence and magnitude of contamination of contamination problems and measure of the representativeness of the analytical process. Laboratory blanks were analyzed with samples to assess contamination imparted by sample preparation and/or analysis. Trip blanks and field blanks help determine how much, if any, contamination was introduced in the field and laboratory activities. All results associated with a particular blank were evaluated to determine whether there was an inherent variability in the data, or if a problem was an isolated occurrence that did not affect the data. Samples were flagged in accordance with *Functional Guidelines* (shown below) where detections were not believed to be site-related.

Blank Non-conformance Charts:

	For common lab contaminants (methylene chloride, acetone, 2-butanone):					
Blank type	Blank result	Sample result	Action for samples			
Method,	Detects	Not detected	No qualification			
Storage, Trip,		< 2x LOQ	Report sample LOQ value with a U			
Field, or Equipment	<u><</u> 2x LOQ	≥ 2x LOQ and ≤ 4x the LOQ	Report the sample result with a U**			
			No qualifications			
		< LOD	Report sample LOD value with a U**			
		≥ LOD and < 2x LOQ	Report sample LOQ value with a U			
	> 2x LOQ	≥ 2x LOQ and < blank contamination	Report the blank result with a U or reject the sample result as unusable R			
		≥ 2x LOQ and ≥ blank contamination	If the result is <2x blank result, report the sample result U.** If the result is > 2x blank result, no qualification is required.**			

Notes:

LOQ = Limit of quantitation
LOD = Limit of detection
U = Undetected
R = Rejected

Lab blank, trip blank, and field blank non-conformances are summarized in Attachment A in Table A-2.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results

MS/MSDs are generated to provide information about the effect of each sample matrix on the sample preparation and the measurement methodology. MS/MSD percent recoveries (%Rs) assess the effect of the sample matrix on the accuracy of the analytical results and %Rs above the laboratory control limit could indicate a potential high result bias while %Rs below QC limits could indicate a potential low result bias. The relative percent differences (RPDs) between the MS and MSD results are evaluated to assess sample precision. The MS/MSD %Rs and RPDs were reviewed for conformance with the QC acceptance criteria. Data qualification to the analytes associated with the specific MS/MSD non-conformances were as follows:

MS/MSD Non-conformances Chart:

Criteria	Action				
Criteria	Detected Compounds	Non-detected Compounds			
%R>Upper Limit	J	No qualification			
20% <u><</u> %R < Lower Limit	J	UJ			
%R <20%	J	Rejected			

Notes:

%R = Percent recovery

RPD = Relative percent difference

J = Estimated

UJ = Undetected and estimated

MS/MSD non-conformances are summarized in Attachment A in Table A-3.

Qualifications Actions

The data were reviewed independently from the laboratory to assess data quality. All analytes detected at concentrations less than the limit of quantitation but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation. Data not qualified during data review are considered usable by the project. Any sample that was analyzed at a dilution because of high concentrations of target or non-target analytes was checked to confirm that the results and/or sample-specific limit of quantitation and limit of detections were adjusted accordingly by the laboratory. The remaining results qualified as estimated may be high or low, but the data are usable for their intended purpose, according to U.S. EPA and Department

of Defense guidelines. Final data review qualifiers used to describe results and how they should be interpreted by the end data user are provided in Attachment B and Attachment C. Attachment D provides final results after data review.

ATTACHMENTS

Attachment A: Non-Conformance Summary Tables
Attachment B: Qualifier Codes and Explanations
Attachment C: Reason Codes and Explanations
Attachment D: Final Results after Data Review

Attachment A Non-Conformance Summary Table

	I!4!-1 O-1	!!L	Table A			
	initiai Cai	ibration	verificat	ion Non-Conformance	<u> </u>	
Analyte	ICV ID	%R	Limit	Associated Samples	Lab ID	Qualifier
DICHLORODIFLUOROMETHANE	P5447A	73.49	80-120	RE126D1-GW-042116	SJ2726-2	Non-detects: UJ
DICHLORODIFLUOROMETHANE	P5447A	73.49	80-120	RE126D2-GW-042116	SJ2726-3	Non-detects: UJ
DICHLORODIFLUOROMETHANE	P5447A	73.49	80-120	FB03-042116	SJ2726-5	Non-detects: UJ
DICHLORODIFLUOROMETHANE	P5447A	73.49	80-120	RE131D1-GW-042116	SJ2726-6	Non-detects: UJ
DICHLORODIFLUOROMETHANE	P5447A	73.49	80-120	RE131D2-GW-042116	SJ2726-7	Non-detects: UJ
ACETONE	P5447A	128.63	80-120	RE126D1-GW-042116	SJ2726-2	Non-detects: UJ
ACETONE	P5447A	128.63	80-120	RE126D2-GW-042116	SJ2726-3	Non-detects: UJ
ACETONE	P5447A	128.63	80-120	FB03-042116	SJ2726-5	Detects: J
ACETONE	P5447A	128.63	80-120	RE131D1-GW-042116	SJ2726-6	Detects: J
ACETONE	P5447A	128.63	80-120	RE131D2-GW-042116	SJ2726-7	Non-detects: UJ
DICHLORODIFLUOROMETHANE	T7138A	78.07	80-120	TRIP BLANK 042116	SJ2726-1	Non-detects: UJ
DICHLORODIFLUOROMETHANE	T7138A	78.07	80-120	DUPLICATE-042116	SJ2726-9	Non-detects: UJ
DICHLORODIFLUOROMETHANE	T7138A	78.07	80-120	RE126D3-GW-042116	SJ2726-4RA	Non-detects: UJ
DICHLORODIFLUOROMETHANE	T7138A	78.07	80-120	RE131D3-GW-042116	SJ2726-8RA	Non-detects: UJ
ACETONE	T7138A	152.32	80-120	TRIP BLANK 042116	SJ2726-1	Detects: J
ACETONE	T7138A	152.32	80-120	DUPLICATE-042116	SJ2726-9	Non-detect: UJ
ACETONE	T7138A	152.32	80-120	RE126D3-GW-042116	SJ2726-4RA	Non-detects: UJ
ACETONE	T7138A	152.32	80-120	RE131D3-GW-042116	SJ2726-8RA	Non-detects: UJ

Notes:

ICV ID = Initial calibration verification identification

%R = Percent recovery

UJ = Qualified non-detect and estimated
J = Detected analytes qualified estimated

	Table A-2 Blank Non-Conformance								
Blank ID	Analyte	Blank Result (UG_L)	LOQ	Detected Associated Sample	Qualifier				
WG182433-9	METHYLENE CHLORIDE	1.9	5.0	FB03-042116	UJ				
FB03-042116	ACETONE	6.0	5.0	DUPLICATE-042116	UJ				
FB03-042116	ACETONE	6.0	5.0	RE126D1-GW-042116	UJ				
FB03-042116	ACETONE	6.0	5.0	RE126D2-GW-042116	UJ				
FB03-042116	ACETONE	6.0	5.0	RE126D3-GW-042116	UJ				
FB03-042116	ACETONE	6.0	5.0	RE131D2-GW-042116	UJ				
FB03-042116	ACETONE	6.0	5.0	RE131D3-GW-042116	UJ				
TRIP BLANK 042116	ACETONE	7.6	5.0	DUPLICATE-042116	UJ				
TRIP BLANK 042116	ACETONE	7.6	5.0	RE126D1-GW-042116	UJ				
TRIP BLANK 042116	ACETONE	7.6	5.0	RE126D2-GW-042116	UJ				
TRIP BLANK 042116	ACETONE	7.6	5.0	RE126D3-GW-042116	UJ				
TRIP BLANK 042116	ACETONE	7.6	5.0	RE131D2-GW-042116	UJ				
TRIP BLANK 042116	ACETONE	7.6	5.0	RE131D3-GW-042116	UJ				

Notes:

 $UG_L = Micrograms per liter$ LOQ = Limit of quantitation

UJ = Analyte qualified as non-detect and estimated due to blank contamination.

Table A-3 Matrix Spike/Matrix Spike Duplicate Non-Conformance							
Spiked Sample	Sample Result Spike MS MSD %R Spiked Sample Analyte (UG_L) Added %R %R Limits Qualifier						Qualifier
RE126D2-GW-042116	1,4-DIOXANE	3.7	2.10	68.9	106*	10 – 90	J
RE126D2-GW-042116	CARBON TETRACHLORIDE	< 0.50	50.0	66.6	61.2*	65 - 140	UJ

Notes:

Micrograms per liter UG_L

MS Matrix spike

Matrix spike duplicate
Percent recovery MSD %R

Bold* Percent recovery not within control limit

J

Detected analyte in associated sample qualified as estimated because the MSD %R is greater than the control limit.

Analyte in associated sample qualified non-detect and estimated "UJ" because the MSD %R is lower than the control limit. UJ

Attachment B

Qualifier Codes and Explanations

Qualifier	Explanation
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
ΩJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual quantitation limit necessary to accurately and precisely measure the analyte in the sample.
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

Attachment C Reason Codes and Explanations

Reason Code	Explanation
be	Equipment blank contamination
bf	Field blank contamination
bl	Laboratory blank contamination
bm	Missing blank information
bt	Trip blank contamination
С	Calibration issue
cr	Chromatographic resolution
d	Reporting limit raised due to chromatographic interference
dt	Dissolved result > total over limit
е	Ether interference
ej	Above calibration range; result estimated.
f	Presumed contamination from FB or ER.
fd	Field duplicate RPDs
h	Holding times
hs	Headspace greater than 6mm in all sample vials
i	Internal standard areas
ii	Injection internal standard area or retention time exceedance
it	Instrument tune
k	Estimated maximum possible concentrations (EMPC)
I	LCS recoveries
Ic	Labeled compound recovery
ld	Laboratory duplicate RPDs
lp	Laboratory control sample/laboratory control sample duplicate RPDs
m	Matrix spike recovery
mc	Deviation from the method
md	MS/MSD RPDs
nb	Negative laboratory blank contamination
р	Chemical preservation issue
p-h	Uncertainty near detection limit (< Reporting Limit), historical reason code applied.
pe	Post Extraction Spike
q	Quantitation issue
r	Dual column RPD
rt	SIM ions not within + 2 seconds
S	Surrogate recovery
sp	Sample preparation issue
su	Evidence of ion suppression
t	Temperature Preservation Issue
Х	Low % solids
у	Serial dilution results
Z	ICS results

Attachment D
Final Results after Data Review

		Sa	Lab ID Sample ID ample Date ample Type	S. TRIP B 4/ Tı	SJ2726 J2726-1 LANK 04211 21/2016 rip Blank	
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.5	U	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U	
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U	
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	U	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U	
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	1	U	
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U	
8260C	2-BUTANONE	78-93-3	UG_L	2.5	U	
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U	
8260C	4-METHYL-2-PENTANONE	108-10-1	UG L	2.5	U	
8260C	ACETONE	67-64-1	UG L	7.6	J	С
8260C	BENZENE	71-43-2	UG L	0.5	U	
8260C	BROMODICHLOROMETHANE	75-27-4	UG L	0.5	Ü	
8260C	BROMOFORM	75-25-2	UG_L	0.5	Ü	
8260C	BROMOMETHANE	74-83-9	UG L	1	Ü	
8260C	CARBON DISULFIDE	75-15-0	UG L	0.5	Ü	
8260C	CARBON TETRACHLORIDE	56-23-5	UG L	0.5	Ü	
8260C	CHLOROBENZENE	108-90-7	UG L	0.5	Ü	
8260C	CHLOROETHANE	75-00-3	UG L	1	Ü	
8260C	CHLOROFORM	67-66-3	UG L	0.5	Ü	
8260C	CHLOROMETHANE	74-87-3	UG L	1	Ü	
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG L	0.5	U	
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG L	0.5	U	
8260C	CYCLOHEXANE	110-82-7	UG L	0.5	U	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG L	0.5	U	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG L	1	UJ	С
8260C	ETHYLBENZENE	100-41-4	UG L	0.5	U	<u> </u>
8260C	ISOPROPYLBENZENE	98-82-8	UG_L	0.5	U	
8260C	M- AND P-XYLENE	108-38-3/106-42	UG L	1	U	
8260C	METHYL ACETATE	79-20-9	UG L	0.75	U	
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.75	U	
8260C	METHYL CYCLOHEXANE METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U	
8260C 8260C	METHYL TERT-BUTYL ETHER METHYLENE CHLORIDE	75-09-2	UG_L UG L	2.5	U	
8260C	O-XYLENE	95-47-6	UG_L	0.5	U	
8260C 8260C	STYRENE			0.5	U	
		100-42-5	UG_L			
8260C	TETRACHLOROETHENE	127-18-4	UG_L	0.5	U	
8260C	TOLUENE	108-88-3	UG_L	0.5	U	
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U	
8260C	TRICHLOROETHENE	79-01-6	UG_L	0.5	U	
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U	
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	U	
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U	

Notes:

UG_L NA

		Sample Deli	very Group		SJ2726		
		·	Lab ID	SJ2726-2			
			Sample ID	RE126D	1-GW-0421	16	
		S	4/21/2016				
		Si	ample Date ample Type		undwater		
Method	Analyte	CAS No	Units	Result	Qual	RC	
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG L	0.5	U	I	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U		
					U		
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.5	_		
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U		
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U		
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	U		
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U		
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U		
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U		
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U		
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U		
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	1	U		
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U		
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U		
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U		
8260C	2-BUTANONE	78-93-3	UG L	2.5	U		
8260C	2-HEXANONE	591-78-6	UG L	2.5	U		
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	U		
8260C	ACETONE	67-64-1	UG L	2.5	UJ	bf,bt,	
8260C	BENZENE	71-43-2	UG L	0.5	Ü	2.72.7	
8260C	BROMODICHLOROMETHANE	75-27-4	UG L	0.5	Ü		
8260C	BROMOFORM	75-25-2	UG L	0.5	U		
8260C	BROMOMETHANE	74-83-9	UG L	1	U		
8260C	CARBON DISULFIDE	75-15-0	UG_L	0.5	U		
	CARBON DISOLFIDE CARBON TETRACHLORIDE		UG_L	0.5	U		
8260C		56-23-5			-		
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U		
8260C	CHLOROETHANE	75-00-3	UG_L	1	U		
8260C	CHLOROFORM	67-66-3	UG_L	0.5	U		
8260C	CHLOROMETHANE	74-87-3	UG_L	1	U		
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.5	U		
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	U		
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	U		
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U		
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	1	UJ	С	
8260C	ETHYLBENZENE	100-41-4	UG_L	0.5	U		
8260C	ISOPROPYLBENZENE	98-82-8	UG_L	0.5	U		
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U		
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	U		
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U		
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG L	0.5	U		
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	U		
8260C	O-XYLENE	95-47-6	UG L	0.5	U		
8260C	STYRENE	100-42-5	UG L	0.5	U		
8260C	TETRACHLOROETHENE	127-18-4	UG L	3.6			
8260C	TOLUENE	108-88-3	UG L	0.5	U		
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG L	0.5	U		
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U	1	
8260C	TRICHLOROETHENE	79-01-6	UG_L	33	U		
					11		
8260C	TRICHLOROFLUOROMETHANE	75-69-4 75-01-4	UG_L	1	U	}	
8260C	VINYL CHLORIDE XYLENES, TOTAL	75-01-4 1330-20-7	UG_L UG_L	<u> </u>	U U	-	
8260C							

Notes:

UG_L NA

			Lab ID Lab ID Sample ID ample Date ample Type	S. RE126D 4/	SJ2726 J2726-3 J2-GW-0421 '21/2016 bundwater	16
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.9	J	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.38	J	
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	2		
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	U	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U	
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	2.2		
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U	
8260C	2-BUTANONE	78-93-3	UG_L	2.5	U	
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U	
8260C	4-METHYL-2-PENTANONE	108-10-1	UG L	2.5	U	
8260C	ACETONE	67-64-1	UG L	2.5	UJ	bf,bt,d
8260C	BENZENE	71-43-2	UG L	0.5	U	, , ,
8260C	BROMODICHLOROMETHANE	75-27-4	UG L	0.5	Ü	
8260C	BROMOFORM	75-25-2	UG_L	0.5	Ü	
8260C	BROMOMETHANE	74-83-9	UG L	1	U	
8260C	CARBON DISULFIDE	75-15-0	UG L	0.5	U	
8260C	CARBON TETRACHLORIDE	56-23-5	UG L	0.5	UJ	m
8260C	CHLOROBENZENE	108-90-7	UG L	0.5	U	
8260C	CHLOROETHANE	75-00-3	UG L	1	Ü	
8260C	CHLOROFORM	67-66-3	UG L	0.5	Ü	
8260C	CHLOROMETHANE	74-87-3	UG L	1	Ü	
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG L	2.2		
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG L	0.5	U	
8260C	CYCLOHEXANE	110-82-7	UG L	0.5	Ü	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG L	0.5	Ü	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG L	1	UJ	С
8260C	ETHYLBENZENE	100-41-4	UG L	0.5	U	
8260C	ISOPROPYLBENZENE	98-82-8	UG_L	0.5	Ü	
8260C	M- AND P-XYLENE	108-38-3/106-42	UG L	1	Ü	
8260C	METHYL ACETATE	79-20-9	UG L	0.75	Ü	
8260C	METHYL CYCLOHEXANE	108-87-2	UG L	0.5	Ü	
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG L	0.5	Ü	
8260C	METHYLENE CHLORIDE	75-09-2	UG L	2.5	Ü	
8260C	O-XYLENE	95-47-6	UG L	0.5	Ü	
8260C	STYRENE	100-42-5	UG L	0.5	U	l
8260C	TETRACHLOROETHENE	127-18-4	UG L	3.4	t	l
8260C	TOLUENE	108-88-3	UG L	0.5	U	l
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG L	0.5	U	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG L	0.5	U	
8260C	TRICHLOROETHENE	79-01-6	UG L	500	─	
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U	
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	U	
8260C	XYLENES, TOTAL	1330-20-7	UG L	1.5	U	
	1 1,4-DIOXANE	123-91-1	UG_L	3.7	J	m

Notes:

UG_L NA

		Sample Del S S	SJ2726 SJ2726-4RA RE126D3-GW-042116 4/21/2016 Groundwater			
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.84	J	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U	
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U	
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.38	J	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U	
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	1	U	
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG L	0.5	U	
8260C	2-BUTANONE	78-93-3	UG L	2.5	U	
8260C	2-HEXANONE	591-78-6	UG L	2.5	U	
8260C	4-METHYL-2-PENTANONE	108-10-1	UG L	2.5	U	
8260C	ACETONE	67-64-1	UG L	2.5	UJ	bf,bt,c
8260C	BENZENE	71-43-2	UG L	0.5	U	, , , , ,
8260C	BROMODICHLOROMETHANE	75-27-4	UG L	0.5	Ü	
8260C	BROMOFORM	75-25-2	UG L	0.5	U	
8260C	BROMOMETHANE	74-83-9	UG L	1	U	
8260C	CARBON DISULFIDE	75-15-0	UG L	0.5	Ü	
8260C	CARBON TETRACHLORIDE	56-23-5	UG L	0.5	Ü	
8260C	CHLOROBENZENE	108-90-7	UG L	0.5	Ü	
8260C	CHLOROETHANE	75-00-3	UG L	1	Ü	
8260C	CHLOROFORM	67-66-3	UG L	0.5	Ü	
8260C	CHLOROMETHANE	74-87-3	UG L	1	U	
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG L	0.5	U	
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG L	0.5	U	
8260C	CYCLOHEXANE	110-82-7	UG L	0.5	U	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG L	0.5	U	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG L	1	UJ O	С
8260C	ETHYLBENZENE	100-41-4	UG L	0.5	U	C
8260C	ISOPROPYLBENZENE	98-82-8	UG_L	0.5	U	
8260C	M- AND P-XYLENE	108-38-3/106-42	UG L	1	U	
8260C 8260C	METHYL ACETATE	79-20-9	UG_L	0.75	U	
8260C 8260C	METHYL ACETATE METHYL CYCLOHEXANE	108-87-2	UG_L	0.75	U	
		1634-04-4	UG_L UG L		U	
8260C	METHYL TERT-BUTYL ETHER	75-09-2		0.5	U	
8260C 8260C	METHYLENE CHLORIDE O-XYLENE	75-09-2 95-47-6	UG_L	2.5 0.5	U	
	STYRENE		UG_L		U	
8260C		100-42-5	UG_L	0.5	U	
8260C	TETRACHLOROETHENE	127-18-4	UG_L	2.8	,,	
8260C	TOLUENE	108-88-3	UG_L	0.5	U	
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U	
8260C	TRICHLOROETHENE	79-01-6	UG_L	4.6		
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U	
8260C	VINYL CHLORIDE	75-01-4	UG_L	11	U	
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U	
8270D_SIM	1,4-DIOXANE	123-91-1	UG_L	1.6		

Notes:

UG_L NA

		SJ2726 SJ2726-5 FB03-042116				
			Sample ID ample Date	4/	/21/2016 eld Blank	
Method	Analyte	CAS No	ample Type Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG L	0.5	U	KC
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG L	0.5	U	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG L	0.5	U	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG L	0.5	U	
8260C	1,1-DICHLOROETHANE	75-34-3	UG L	0.5	U	
8260C	1,1-DICHLOROETHENE	75-34-3	UG_L	0.5	U	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG L	0.5	U	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG L	0.75	U	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U	
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U	
8260C	1,2-DICHLOROETHANE	540-59-0	UG_L	1	U	
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U	
8260C	2-BUTANONE	78-93-3	UG L	2.5	U	
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U	
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	U	
8260C	ACETONE	67-64-1	UG_L	6	J	-
8260C	BENZENE	71-43-2	UG_L	0.5	U	С
					U	
8260C 8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	U	
	BROMOFORM	75-25-2	UG_L	0.5	1 1	
8260C	BROMOMETHANE	74-83-9	UG_L	1	U	
8260C	CARBON DISULFIDE	75-15-0	UG_L	0.5	U	
8260C	CARBON TETRACHLORIDE	56-23-5	UG_L	0.5	U	
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U	
8260C	CHLOROETHANE	75-00-3	UG_L	1	U	
8260C	CHLOROFORM	67-66-3	UG_L	0.5	U	
8260C	CHLOROMETHANE	74-87-3	UG_L	1		
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.5	U	
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	U	
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	U	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U UJ	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L UG L	1		С
8260C	ETHYLBENZENE ISOPROPYLBENZENE	100-41-4		0.5	U	
8260C		98-82-8	UG_L	0.5		
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1 0.75	U	
8260C	METHYL CYCLOUEVANE	79-20-9	UG_L	0.75	U	
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U	
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U	اجا
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	UJ	bl
8260C	O-XYLENE	95-47-6	UG_L	0.5	U	
8260C	STYRENE	100-42-5	UG_L	0.5	U	
8260C	TETRACHLOROETHENE	127-18-4	UG_L	0.5	U	
8260C	TOLUENE	108-88-3	UG_L	0.5	U	
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U	
8260C	TRICHLOROETHENE	79-01-6	UG_L	0.5	U	
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U	
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	U	
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U	

Notes:

UG_L NA

		Sample Deli			SJ2726	
			Lab ID		J2726-6	
			Sample ID		1-GW-04211	16
			ample Date	4/	21/2016	
		Sa	ample Type	Gro	undwater	
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG L	0.5	U	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG L	4.4		
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG L	0.5	U	
8260C	1,1-DICHLOROETHANE	75-34-3	UG L	0.5	Ü	
8260C	1,1-DICHLOROETHENE	75-35-4	UG L	0.71	J	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG L	0.5	Ŭ	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG L	0.5	U	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG L	0.5	U	
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U	
					U	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	4.1	ļ.,	
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U	
8260C	2-BUTANONE	78-93-3	UG_L	2.5	U	
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U	
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	U	
8260C	ACETONE	67-64-1	UG_L	2.5	UJ	С
8260C	BENZENE	71-43-2	UG_L	0.5	U	
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	U	
8260C	BROMOFORM	75-25-2	UG_L	0.5	U	
8260C	BROMOMETHANE	74-83-9	UG L	1	U	
8260C	CARBON DISULFIDE	75-15-0	UG L	0.5	U	
8260C	CARBON TETRACHLORIDE	56-23-5	UG L	0.5	U	
8260C	CHLOROBENZENE	108-90-7	UG L	0.5	Ü	
8260C	CHLOROETHANE	75-00-3	UG L	1	Ü	
8260C	CHLOROFORM	67-66-3	UG L	3.5	Ŭ	
8260C	CHLOROMETHANE	74-87-3	UG L	1	U	
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG L	4.1		
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	U	
8260C	CYCLOHEXANE		UG_L	0.5	U	
8260C	DIBROMOCHLOROMETHANE	110-82-7 124-48-1	UG_L	0.5	U	
					UJ	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	1		С
8260C	ETHYLBENZENE	100-41-4	UG_L	0.5	U	
8260C	ISOPROPYLBENZENE	98-82-8	UG_L	0.5	U	
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U	
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	U	
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U	
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U	
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	U	
8260C	O-XYLENE	95-47-6	UG_L	0.5	U	
8260C	STYRENE	100-42-5	UG_L	0.5	U	
8260C	TETRACHLOROETHENE	127-18-4	UG_L	7.6		
8260C	TOLUENE	108-88-3	UG_L	0.5	U	
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U	
8260C	TRICHLOROETHENE	79-01-6	UG L	88		
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG L	1	U	
8260C	VINYL CHLORIDE	75-01-4	UG L	. 1	Ü	
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U	
	1 1,4-DIOXANE	123-91-1	UG_L	8.7		

Notes:

UG_L NA

		very Group Lab ID Sample ID	S.	SJ2726 J2726-7	4.	
			RE131D2-GW-042116			
			ample Date		21/2016	
	Ta		ample Type		oundwater	D0
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	1	U	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U	
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U	
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	U	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U U	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5		
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5 0.5	U	
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L UG L		U	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0		3.8	+	
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U U	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5		
8260C	1,4-DICHLOROBENZENE 2-BUTANONE	106-46-7	UG_L	0.5	U	
8260C		78-93-3	UG_L	2.5	U	
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U	
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5		l- C l-
8260C	ACETONE	67-64-1	UG_L	2.5	UJ	bf,b
8260C	BENZENE	71-43-2	UG_L	0.5	U	
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	U	
8260C	BROMOFORM	75-25-2	UG_L	0.5	U	
8260C	BROMOMETHANE	74-83-9	UG_L	1	U	
8260C	CARBON DISULFIDE	75-15-0	UG_L	0.5	U	
8260C	CARBON TETRACHLORIDE	56-23-5	UG_L	0.5	U	
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U	
8260C	CHLOROETHANE	75-00-3	UG_L	1	U	
8260C	CHLOROFORM	67-66-3	UG_L	0.5	U	
8260C	CHLOROMETHANE	74-87-3	UG_L	1	U	
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	3.8		
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	U	
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	U	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	1	UJ	С
8260C	ETHYLBENZENE	100-41-4	UG_L	0.5	U	
8260C	ISOPROPYLBENZENE	98-82-8	UG_L	0.5	U	
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1 0.75	U	
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	U	
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U	
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U	
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	U	
8260C	O-XYLENE CTYDENE	95-47-6	UG_L	0.5	U	
8260C	STYRENE	100-42-5	UG_L	0.5	U	
8260C	TETRACHLOROETHENE	127-18-4	UG_L	6	<u> </u>	
8260C	TOLUENE	108-88-3	UG_L	0.5	U	
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U	
8260C	TRICHLOROETHENE	79-01-6	UG_L	41	 	
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U	
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	U	
8260C	XYLENES, TOTAL 1,4-DIOXANE	1330-20-7 123-91-1	UG_L UG_L	1.5 8.2	U	

Notes:

UG_L NA

			Very Group Lab ID Sample ID ample Date	SJ2726 SJ2726-8RA RE131D3-GW-042116 4/21/2016		
NA - 411	In.,		ample Type		oundwater	DO
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	91		
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U	
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U	
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.54	J	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U	
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	0.24	J	
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U	
8260C	2-BUTANONE	78-93-3	UG_L	2.5	U	
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U	
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	U	
8260C	ACETONE	67-64-1	UG_L	2.5	UJ	bf,bt,d
8260C	BENZENE	71-43-2	UG_L	0.5	U	
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	U	
8260C	BROMOFORM	75-25-2	UG_L	0.5	U	
8260C	BROMOMETHANE	74-83-9	UG_L	1	U	
8260C	CARBON DISULFIDE	75-15-0	UG_L	0.5	U	
8260C	CARBON TETRACHLORIDE	56-23-5	UG_L	0.5	U	
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U	
8260C	CHLOROETHANE	75-00-3	UG_L	1	U	
8260C	CHLOROFORM	67-66-3	UG_L	0.5	U	
8260C	CHLOROMETHANE	74-87-3	UG_L	1	U	
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.24	J	
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG L	0.5	U	
8260C	CYCLOHEXANE	110-82-7	UG L	0.5	U	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG L	0.5	Ü	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG L	1	UJ	С
8260C	ETHYLBENZENE	100-41-4	UG L	0.5	U	
8260C	ISOPROPYLBENZENE	98-82-8	UG L	0.5	U	
8260C	M- AND P-XYLENE	108-38-3/106-42	UG L	1	U	
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	Ü	
8260C	METHYL CYCLOHEXANE	108-87-2	UG L	0.5	U	
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG L	0.5	Ü	
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	Ü	
8260C	O-XYLENE	95-47-6	UG L	0.5	Ü	
8260C	STYRENE	100-42-5	UG L	0.5	Ü	
8260C	TETRACHLOROETHENE	127-18-4	UG_L	1.5	1	
8260C	TOLUENE	108-88-3	UG L	0.5	U	
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG L	0.5	U	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG L	0.5	U	
8260C	TRICHLOROETHENE	79-01-6	UG L	3.8		
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	<u> </u>	U	
8260C	VINYL CHLORIDE	75-09-4 75-01-4	UG_L	1	U	
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U	
	1,4-DIOXANE	123-91-1	UG_L	1.1	 	

Notes:

UG_L NA

		Sample Deli	Lab ID	SJ2726 SJ2726-9			
			Sample ID		CATE-04211	6	
			ample Date		21/2016		
	_		ample Type		d Duplicate		
Method	Analyte	CAS No	Units	Result	Qual	RC	
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U		
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U		
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	4.2			
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U		
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U		
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.56	J		
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U		
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U		
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U		
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U		
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U		
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	3.4			
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U		
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U		
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U		
8260C	2-BUTANONE	78-93-3	UG_L	2.5	U		
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U		
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	U		
8260C	ACETONE	67-64-1	UG_L	2.5	UJ	bf,bt,	
8260C	BENZENE	71-43-2	UG_L	0.5	U		
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	U		
8260C	BROMOFORM	75-25-2	UG_L	0.5	U		
8260C	BROMOMETHANE	74-83-9	UG_L	1	U		
8260C	CARBON DISULFIDE	75-15-0	UG_L	0.5	U		
8260C	CARBON TETRACHLORIDE	56-23-5	UG_L	0.5	U		
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U		
8260C	CHLOROETHANE	75-00-3	UG_L	1	U		
8260C	CHLOROFORM	67-66-3	UG_L	3.5			
8260C	CHLOROMETHANE	74-87-3	UG_L	1	U		
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	3.4			
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	U		
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	U		
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U		
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	1	UJ	С	
8260C	ETHYLBENZENE	100-41-4	UG L	0.5	U		
8260C	ISOPROPYLBENZENE	98-82-8	UG L	0.5	U		
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U		
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	Ü		
8260C	METHYL CYCLOHEXANE	108-87-2	UG L	0.5	Ü		
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U		
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	Ü		
8260C	O-XYLENE	95-47-6	UG_L	0.5	U		
8260C	STYRENE	100-42-5	UG_L	0.5	U		
8260C	TETRACHLOROETHENE	127-18-4	UG_L	6.5			
8260C	TOLUENE	108-88-3	UG L	0.5	U		
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG L	0.5	Ü		
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG L	0.5	U		
8260C	TRICHLOROETHENE	79-01-6	UG L	79	Ĭ		
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG L	1	U		
8260C	VINYL CHLORIDE	75-01-4	UG L	1	U		
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U		
	1 1,4-DIOXANE	123-91-1	UG_L	10	1 		

Notes:

UG_L NA

DATA VALIDATION REPORT

Regional Groundwater Investigation — NWIRP Bethpage				
Katahdin Analytical				
SJ0752				
	by U.S. EPA SW-846 Method 9060A and Standard anic Carbon by High-Temperature Combustion			
2				
0888812477.SA.DV				
Dana Miller/Resolution Consultants	Completed on: 03/04/2016			
Tina Cantwell/Resolution Consultants	File Name: SJ0691_ 9060A_5310B			
	Katahdin Analytical SJ0752 Total Organic Carbon (TOC) Method 5310B for Total Org. 2 0888812477.SA.DV Dana Miller/Resolution Consultants Tina Cantwell/Resolution			

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage site on 29 January 2016 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York. (Resolution Consultants August 2014).

Sample ID	Lab ID	Matrix/Sample Type	Analysis
RE131D2-SOIL-012916-568-570	SJ0752-1	Soil	9060A, 2540G
RE131D2-EB-012916	SJ0752-2	Equipment Blank	5310B

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 9060A, Total Organic Carbon* (U.S. EPA, 1996), *Method SM5310B, Total Organic Carbon by High-Temperature Combustion, U.S. Environmental Protection Agency (U.S. EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review* (NFG, January 2010, and Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 4.2 (October 2010). In

the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody)/sample integrity
- ✓ Holding times and sample preservation
- NA Gas chromatography/Mass spectrometer performance checks
- NA Initial calibration/continuing calibration verification
- ✓ Laboratory blanks/equipment blanks/field blanks/trip blanks
- NA Surrogate spike recoveries
- NA Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample / laboratory control sample duplicate results
- NA Field duplicates
- NA Internal standards
- ✓ Sample results/reporting issues

The symbol () indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. Acceptable data parameters for which all criteria were met and no qualification was performed, and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further.

Qualifications Actions

The data was reviewed independently from the laboratory to assess data quality. TOC was detected in the equipment blank but professional judgement was used not to qualify the associated sample as undetected. All analytes detected at concentrations less than the limit of quantitation but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation. No results were qualified during this review and are considered usable by the project for their intended purpose, according to U.S. Environmental Protection Agency and Department of Defense guidelines. Attachment A, Table A-1 provides final results after data review.

ATTACHMENTS

Attachment A: Table A-1, Final Results after Data Review

Attachment A Final Results after Data Review

Table A-1
Final Results after Data Review
Regional Groundwater Investigation NWIRP Bethpage

		Sample Del	ivery Group	SJ0752	SJ0752
		Lab ID		SJ0752-1	SJ0752-2
			Sample ID	RE131D2-SOIL-012916-568-570	RE131D2-EB-012916
		S	ample Date	1/29/2016	1/29/2016
	Sample Type		Soil	Equipment Blank	
Method	Analyte	CAS No	Units	Result	Result
2540G	TOTAL SOLIDS	-29	PCT	88	NA
5310B	TOTAL ORGANIC CARBON	-28	MG_L	NA	0.15 J
9060A	TOTAL ORGANIC CARBON	-28	UG_G	240 J	NA

Notes:

ID = Identification

PCT = Percent

 $MG_L = Milligrams per liter$ $UG_G = Micrograms per gram$

NA = Not analyzed

J = Estimated value – value was below the limit of quantitation.

DATA VALIDATION REPORT

Regional Groundwater Investigation — NWIRP Bethpage				
Katahdin Analytical				
SJ1198				
	by U.S. EPA SW-846 Method 9060A and Standard anic Carbon by High-Temperature Combustion			
2				
0888812477.SA.DV				
Dana Miller/Resolution Consultants	Completed on: 03/30/2016			
Tina Cantwell/Resolution Consultants	File Name: SJ1198_ 9060A_5310B			
	Katahdin Analytical SJ1198 Total Organic Carbon (TOC) Method 5310B for Total Org. 2 0888812477.SA.DV Dana Miller/Resolution Consultants Tina Cantwell/Resolution			

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage site on 16 February 2016 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York. (Resolution Consultants August 2014).

Sample ID	Lab ID	Matrix/Sample Type	Analysis
RE131D1-SOIL-021616-433-435	SJ1198-1	Soil	9060A, 2540G
RE131D1-EB-021616	SJ1198-2	Equipment Blank	5310B

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 9060A, Total Organic Carbon* (U.S. EPA, 1996), *Method SM5310B, Total Organic Carbon by High-Temperature Combustion, U.S. Environmental Protection Agency (U.S. EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review* (NFG, January 2010, and Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 4.2 (October 2010). In

the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody)/sample integrity
- ✓ Holding times and sample preservation
- NA Gas chromatography/Mass spectrometer performance checks
- NA Initial calibration/continuing calibration verification
- ✓ Laboratory blanks/equipment blanks/field blanks/trip blanks
- NA Surrogate spike recoveries
- NA Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample / laboratory control sample duplicate results
- NA Field duplicates
- NA Internal standards
- ✓ Sample results/reporting issues

The symbol () indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. Acceptable data parameters for which all criteria were met and no qualification was performed, and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further.

Qualifications Actions

The data was reviewed independently from the laboratory to assess data quality. TOC was detected in the equipment blank but professional judgement was used not to qualify the associated sample as undetected. All analytes detected at concentrations less than the limit of quantitation but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation. No results were qualified during this review and are considered usable by the project for their intended purpose, according to U.S. Environmental Protection Agency and Department of Defense guidelines. Attachment A, Table A-1 provides final results after data review.

ATTACHMENTS

Attachment A: Table A-1, Final Results after Data Review

Attachment A Final Results after Data Review

Table A-1 **Final Results after Data Review** Regional Groundwater Investigation NWIRP Bethpage

		Sample Del	SJ1198	SJ1198	
	Lab ID			SJ1198-1	SJ1198-2
	Sample ID		RE131D1-SOIL-021616-433-435	RE131D1-EB-021616	
			ample Date	2/16/2016	2/16/2016
	Sample 7		ample Type	Soil	Equipment Blank
Method	Analyte	CAS No	Units	Result	Result
2540G	TOTAL SOLIDS	-29	PCT	84	NA
5310B	TOTAL ORGANIC CARBON	-28	MG_L	NA	0.22 J
9060A	TOTAL ORGANIC CARBON	-28	UG_G	510	NA

Notes:

ID = Identification PCT =

Percent

 $MG_L =$ Milligrams per liter UG_G = Micrograms per gram

NA Not analyzed

Estimated value – value was below the limit of quantitation.

DATA VALIDATION REPORT

Project:	Regional Groundwater Inves	Regional Groundwater Investigation — NWIRP Bethpage					
Laboratory:	Katahdin Analytical	Katahdin Analytical					
Sample Delivery Groups:	SJ1554						
Analyses/Method:	Total Organic Carbon (TOC) by U.S. EPA SW-846 Method 9060A and Standard Method 5310B for Total Organic Carbon by High-Temperature Combustion						
Validation Level:	2						
Project Number:	0888812477.SA.DV						
Prepared by:	Dana Miller/Resolution Consultants	Completed on: 04/26/2016					
Reviewed by:	Tina Cantwell/Resolution Consultants	File Name: SJ1554_ 9060A_5310B					

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage site on 2 March 2016 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York. (Resolution Consultants August 2014).

Sample ID	Lab ID	Matrix/Sample Type	Analysis
RE131D3-SOIL-030216-663-665	SJ1554-1	Soil	9060A, 2540G
RE131D3-EB-030216	SJ1554-2	Equipment Blank	5310B

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 9060A, Total Organic Carbon* (U.S. EPA, 1996), *Method SM5310B, Total Organic Carbon by High-Temperature Combustion, U.S. Environmental Protection Agency (U.S. EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review* (NFG, January 2010, and Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 4.2 (October 2010). In

the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody)/sample integrity
- ✓ Holding times and sample preservation
- NA Gas chromatography/Mass spectrometer performance checks
- NA Initial calibration/continuing calibration verification
- X Laboratory blanks/equipment blanks
- NA Surrogate spike recoveries
- ✓ Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample / laboratory control sample duplicate results
- NA Field duplicates
- NA Internal standards
- ✓ Sample results/reporting issues

The symbol (\checkmark) indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. Acceptable data parameters for which all criteria were met and no qualification was performed, and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further. The symbol (x) indicates that a QC non-conformance resulted in the qualification of data. Any QC non-conformance that resulted in the qualification of data is discussed below.

Laboratory Blanks/Equipment Blanks

Laboratory blanks and equipment blanks were analyzed with samples to assess contamination imparted by sample preparation and/or analysis. All results associated with a particular blank were evaluated to determine whether there was an inherent variability in the data, or if a problem was an isolated occurrence that did not affect the data. Samples were flagged in accordance with *Functional Guidelines* (shown below) where detections were not believed to be site-related.

Blank Non-conformance Charts:

Blank type	Blank result	Sample result	Action for samples
Method, Storage, Trip, Field, or Equipment	Detects	Not detected	No qualification
		< 2x LOQ	Report sample LOQ value with a U
	≤2x LOQ	≥ 2x LOQ and ≤ 4x the LOQ	Report the sample result with a U**
		4x the LOQ	No qualifications
		< LOD	Report sample LOD value with a U**
		> LOD and < 2x LOQ	Report sample LOQ value with a U
	> 2x LOQ	2x LOQ and < blank contamination	Report the blank result with a U or reject the sample result as unusable R
		2x LOQ and blank contamination	If the result is ≤2x blank result, report the sample result U.** If the result is > 2x blank result, no qualification is required.**

	Fo	r all other compounds:	
Blank type	Blank result	Sample result	Action for samples
	Detects	Not detected	No qualification
	< 2x LOQ	< 2x LOQ	Report sample LOQ value with a U
	< 2X LOQ	<u>></u> 2x LOQ	Use professional judgment
	3 1 1	< 2x LOQ	Report sample LOQ value with a U
		2x LOQ and < blank contamination	Report the blank result with a U or reject the sample result as unusable R
Method, Storage, Trip, Field, or Equipment		≥ 2x LOQ and ≥ blank contamination	If the result is <2x blank result, report the sample result U. If the result is > 2x blank result, no qualification is required.
	0.100	< 2x LOQ	Report sample LOQ value with a U
	= 2x LOQ	<u>></u> 2x LOQ	Use professional judgment
	Gross contamination	Detects	Qualify results as unusable R

Notes:

LOQ = Limit of quantitation
LOD = Limit of detection
U = Undetected
R = Rejected

TOC was detected in the equipment blank but professional judgement was used not to qualify the associated sample as undetected. Lab blank non-conformances are summarized in Attachment A in Table A-1.

Qualifications Actions

The data was reviewed independently from the laboratory to assess data quality. One sample was qualified as non-detect and estimated due to lab blank contamination. All analytes detected at concentrations less than the limit of quantitation but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation. Data not qualified during data review are considered usable by the project for their intended purpose, according to U.S. EPA and Department of Defense guidelines. Final results after data review are provided in Attachment B.

ATTACHMENTS

Attachment A: Non-Conformance Summary Table

Attachment B: Table B-1, Final Results after Data Review

Attachment A Non-Conformance Summary Table

Table A-1 Lab Blank Non-Conformance

							Detected Associated Sample		
				Blank Result			Result		
Blank	Batches	Method	Analyte	(MG_L)	LOQ	Associated Samples	(MG_L)	LOQ	Qualifier
WG180357-1	WG180357	5310B	TOTAL ORGANIC CARBON	0.13	1.0	RE131D3-EB-030216	0.17	1.0	UJ

Notes:

MG_L = Milligrams per liter LOQ = Limit of quantitation

UJ = The analyte was found in a sample at a concentration less than five times the blank concentration and qualified non-detect and estimated.

Attachment B Final Results after Data Review

Table B-1
Final Results after Data Review
Regional Groundwater Investigation NWIRP Bethpage

Sample Delivery Group					SJ1554		SJ1554		
	Lab ID				SJ1554-1		SJ1554-2		
Sample ID			RE131D3-SOIL-030216-663-665		6-663-665	RE131D3-EB-030216			
Sample Date		3/2/2016		3/2/2016					
Sample Type		Soil		Equipment Blank		nk			
Method	Analyte	CAS No	Units	Result	Qual	RC	Result	Qual	RC
2540G	TOTAL SOLIDS	-29	PCT	85			NA		
5310B	TOTAL ORGANIC CARBON	-28	MG_L	NA			0.5	UJ	bl
9060A	TOTAL ORGANIC CARBON	-28	UG_G	220	J		NA		

Notes:

ID = Identification

Qual = Final interpreted qualifier

RC = Validator reason code (See definition below)

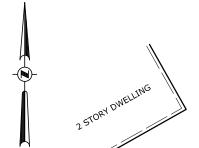
PCT = Percent

MG_L = Milligrams per liter
UG_G = Micrograms per gram

NA = Not analyzed

UJ = Non-detect and estimated value

J = Estimated value; the reported value is greater than or equal to the laboratory method limit but less than the quantitation limit.

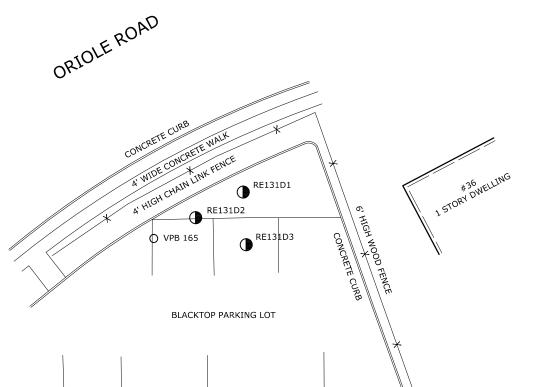

Reason Code

bl = Flagged non-detect and estimated due to lab blank contamination.

Section 5

Survey

UNAUTHORIZED ALTERATION OR ADDITION TO THIS DOCUMENT IS A VIOLATION OF SECTION 7209 SUBDIVISION 2 OF THE NEW YORK STATE EDUCATION LAW.


Description	Northing	Easting	Latitude	Longitude	Ground	Rim	PVC
VPB 165	204352.95	1123086.29	N40-43-35.36	W73-29-56.73	86.26	NA	NA
RE131D1	204367.45	1123114.27	N40-43-35.50	W73-29-56.37	86.33	86.33	85.94
RE131D2	204359.42	1123099.42	N40-43-35.42	W73-29-56.56	86.25	86.25	85.72
RE131D3	204350.99	1123115.19	N40-43-35.34	W73-29-56.36	86.22	86.22	85.90

Legend

Monitoring Well

O VPB 160

Vertical Profile Boring

GARAGE

Map Notes

- Information shown hereon was compiled from an actual field survey conducted on April 26, 2016.
- North orientation is Grid North based on the New York State Plane Coordinate System, Long Island Zone, NAD 83(2011) epoch 2010.00 as obtained from GPS observations.
- Vertical datum shown hereon is NAVD 88(Geoid12A) as obtained from RTK GPS observations using the Queens CORS as a base station.

DWG NO.16-328

Date	RECORD OF	Appr.		
			T	
			ĺ	
Drafter:	LMK			
Appr. by	y: JFC	Proj. No. 14.4121		_

VERTICAL PROFILE BORING 165 SURVEY LOCATION 36 ORIOLE ROAD

TOWN OF HEMPSTEAD

NASSAU COUNTY, NEW YORK

C.T. MALE ASSOCIATES

Engineering, Surveying, Architecture & Landscape Architecture, D.P.C.

50 CENTURY HILL DRIVE, LATHAM, NY 12110 518.786.7400 * FAX 518.786.7299

SCALE: 1"=30'

DATE: APRIL 26, 2016